Collect. Czech. Chem. Commun. 2006, 71, 769-787
https://doi.org/10.1135/cccc20060769

Adenosine Deaminase in Nucleoside Synthesis. A Review

Mukta Gupta and Vasu Nair*

Department of Pharmaceutical and Biomedical Sciences and The Center for Drug Discovery, The University of Georgia, Athens, GA 30602, U.S.A.

References

1. Moffatt J. G.: NATO ASI Ser., Ser. A 1979, 26, 71.
2. Hanrahan J. R., Hutchinson D. W.: J. Biotechnol. 1992, 23, 193. <https://doi.org/10.1016/0168-1656(92)90092-N>
3. Pfrogner N.: Arch. Biochem. Biophys. 1967, 119, 141. <https://doi.org/10.1016/0003-9861(67)90439-0>
4. Cristalli G., Franchetti P., Grifantini M., Vittori S., Lupidi G., Riva F., Bordoni T., Geroni C., Verini M. A.: J. Med. Chem. 1988, 31, 390. <https://doi.org/10.1021/jm00397a021>
5. Franco R., Casado V., Ciruela F., Saura C., Mallol J., Canela E. I., Lluis C.: Prog. Neurobiol. (Oxford) 1997, 52, 283. <https://doi.org/10.1016/S0301-0082(97)00013-0>
6. Andreasyan N. A., Hairapetyan H. L., Sargisova Y. G., Mardanyan S. S.: FEBS Lett. 2005, 579, 643. <https://doi.org/10.1016/j.febslet.2004.11.109>
7. Hirschhorn R., Paageorgiou P. S., Kesarwala H. H., Taft L. T.: New Engl. J. Med. 1980, 303, 377. <https://doi.org/10.1056/NEJM198008143030706>
8. Trotta P. P., Smithwick E. M., Balis M. E.: Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 104. <https://doi.org/10.1073/pnas.73.1.104>
9. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J.: Lancet 1972, 2, 1067. <https://doi.org/10.1016/S0140-6736(72)92345-8>
10. Cowan M. J., Fraga M., Andrew J., Lameris-Martin N., Ammann A. J.: Cell Immunol. 1982, 67, 121. <https://doi.org/10.1016/0008-8749(82)90204-0>
11. Green H., Chan T.: Science 1973, 182, 836. <https://doi.org/10.1126/science.182.4114.836>
12. Trams E. G., Lauter C. J.: Biochem. J. 1975, 152, 681. <https://doi.org/10.1042/bj1520681>
13. Ressler N.: Clin. Chim. Acta 1969, 24, 247. <https://doi.org/10.1016/0009-8981(69)90320-9>
14. Scriver C. R.: The Metabolic Basis of Inherited Disease. McGraw–Hill, New York 1995.
15. Frick L., Wolfenden R., Smal E., Baker D. C.: Biochemistry 1986, 25, 1616. <https://doi.org/10.1021/bi00355a025>
16. Zielke C., Suelter C. in: The Enzymes (P. Boyer, Ed.), 3rd ed., Vol. 54. Academic Press, New York 1971.
17. Wilson D. K., Rudolph F. B., Quiocho F. A.: Science 1991, 252, 1278. <https://doi.org/10.1126/science.1925539>
18. Wolfenden R., Tomozawa Y., Bamman B1: Biochemistry 1968, 7, 3965. <https://doi.org/10.1021/bi00851a025>
19. Bhaumik D., Medin J., Gathy K., Coleman M. S.: J. Biol. Chem. 1993, 268, 5464.
20. Cooper B. F., Sideraki V., Wilson D. K., Dominguez D. Y., Clark S. W., Quiocho F. A., Rudolph F. B: Protein Sci. 1997, 6, 1031. <https://doi.org/10.1002/pro.5560060509>
21. Daddona P. E., Shewach D. S., Kelley W. N., Argos P., Markham A. F., Orkin S. H.: J. Biol. Chem. 1984, 259, 12101.
22. Iwaki-Egawa S., Namiki C., Watanabe Y.: Comp. Biochem. Physiol., B: Biochem. Mol. Biol. 2004, 137, 247. <https://doi.org/10.1016/j.cbpc.2003.11.010>
23. Chang Z. Y., Nygaard P., Chinault A. C., Kellems R. E.: Biochemistry 1991, 30, 2273. <https://doi.org/10.1021/bi00222a033>
24. Wiginton D. A., Kaplan D. J., States J. C., Akeson A. L., Perme C. M., Bilyk I. J., Vaughn A. J., Lattier D. L., Hutton J. J.: Biochemistry 1986, 25, 8234. <https://doi.org/10.1021/bi00373a017>
25. Cory J. G., Suhadolnik R. J.: Biochemistry 1965, 4, 1729. <https://doi.org/10.1021/bi00885a007>
26. Cory J. G., Suhadolnik R. J.: Biochemistry 1965, 4, 1733. <https://doi.org/10.1021/bi00885a008>
27. Ford H., Jr., Siddiqui M. A., Driscoll J. S., Marquez V. E., Kelley J. A., Mitsuya H., Shirasaka T.: J. Med. Chem. 1995, 38, 1189. <https://doi.org/10.1021/jm00007a015>
28. Ferrero M., Gotor V.: Chem. Rev. 2000, 100, 4319. <https://doi.org/10.1021/cr000446y>
29. Santaniello E., Ciuffreda P., Alessandrini L.: Synthesis 2005, 509. <https://doi.org/10.1055/s-2005-861821>
30. Minato S., Nakanishi K.: J. Biochem. 1967, 62, 21. <https://doi.org/10.1093/oxfordjournals.jbchem.a128631>
31. Nair V., Wiechert R. J.: Bioorg. Chem. 1980, 9, 423. <https://doi.org/10.1016/0045-2068(80)90002-4>
32. Bloch A., Robins M. J., McCarthy J. R., Jr.: J. Med. Chem. 1967, 10, 908. <https://doi.org/10.1021/jm00317a034>
33. Hoshino H., Shimizu N., Takita T., Takeuchi T.: J. Antibiot. 1987, 40, 1077. <https://doi.org/10.7164/antibiotics.40.1077>
34. Shimada N., Hasegawa S., Saito S., Nishikiori T., Fujii A., Takita T.: J. Antibiot. 1987, 40, 1788. <https://doi.org/10.7164/antibiotics.40.1788>
35. Montgomery J. A., Shortnacy A. T., Carson D. A., Secrist J. A.: J. Med. Chem. 1986, 29, 2389. <https://doi.org/10.1021/jm00161a041>
36. Seela F., Kaiser K.: Chem. Pharm. Bull. 1988, 36, 4153. <https://doi.org/10.1248/cpb.36.4153>
37. Farina V., Benigni D. A.: Tetrahedron Lett. 1988, 29, 1239. <https://doi.org/10.1016/S0040-4039(00)80265-8>
38. Nair V., Buenger G. S.: J. Am. Chem. Soc. 1989, 111, 8502. <https://doi.org/10.1021/ja00204a026>
39. Vince R., Brownell J.: Biochem. Biophys. Res. Commun. 1990, 168, 912. <https://doi.org/10.1016/0006-291X(90)91115-9>
40. Nair V., Sells T. B.: Synlett 1991, 753. <https://doi.org/10.1055/s-1991-34774>
41. Nair V., Sells T. B.: Biochim. Biophys. Acta 1992, 1119, 201. <https://doi.org/10.1016/0167-4838(92)90392-Q>
42. Baba M., Pauwels R., Balzarini J., Herdewijn P., De Clercq E.: Biochem. Biophys. Res. Commun. 1987, 145, 1080. <https://doi.org/10.1016/0006-291X(87)91547-6>
43. Hao Z., Cooney D. A., Hartman N. R., Perno C. F., Fridland A., DeVico A. L., Sarngadharan M. G., Broder S., Johns D. G.: Mol. Pharmacol. 1988, 34, 431.
44. Robins M. J., Zou R., Hansske F., Wnuk S. F.: Can. J. Chem. 1997, 75, 762. <https://doi.org/10.1139/v97-092>
45. Ciuffreda P., Casati S., Santaniello E.: Bioorg. Med. Chem. Lett. 1999, 9, 1577. <https://doi.org/10.1016/S0960-894X(99)00228-0>
46. Nair V., Buenger G. S., Leonard N. J., Balzarini J., De Clercq E.: J. Chem. Soc., Chem. Commun. 1991, 22, 1650. <https://doi.org/10.1039/c39910001650>
47. Farina V., Benigni D. A., Brodfuehrer P. R.: U.S. 90-486701, 1991.
48. Megati S., Goren Z., Silverton J. V., Orlin J., Nishimura H., Shirasaki T., Mitsuya H., Zemlicka J.: J. Med. Chem. 1992, 35, 4098; Erratum in: J. Med. Chem. 1993, 36, 634. <https://doi.org/10.1021/jm00100a016>
49. Nair V., Nuesca Z. M.: J. Am. Chem. Soc. 1992, 114, 7951. <https://doi.org/10.1021/ja00046a074>
50. Nair V., St. Clair M. H., Reardon J. E., Krasny H. C., Hazen R. J., Paff M. T., Boone L. R., Tisdale M., Najera I., Dornsife R. E., Averett D. R., Borroto-Esoda K., Yale J. L., Zimmerman T. P., Rideout J. L.: Antimicrob. Agents Chemother. 1995, 391, 1993. <https://doi.org/10.1128/AAC.39.9.1993>
51. Bolon P. J., Sells T. B., Nuesca Z. M., Purdy D. F., Nair V.: Tetrahedron 1994, 50, 7747. <https://doi.org/10.1016/S0040-4020(01)85259-5>
52. Shuto S., Obara T., Yaginuma S., Matsuda A.: Chem. Pharm. Bull. 1997, 45, 138. <https://doi.org/10.1248/cpb.45.138>
53. Katagiri N., Kokufuda H., Makino M., Vince R., Kaneko C.: Nucleosides Nucleotides 1998, 17, 81. <https://doi.org/10.1080/07328319808005159>
54. Ciuffreda P., Casati S., Santaniello E.: Tetrahedron 2000, 56, 3239. <https://doi.org/10.1016/S0040-4020(00)00222-2>
55. Marrone T. J., Straatsma T. P., Briggs J. M., Wilson D. K., Quiocho F. A., McCammon J. A.: J. Med. Chem. 1996, 39, 277. <https://doi.org/10.1021/jm9505674>
56. Easterwood L. M., Veliz E. A., Beal P. A.: J. Am. Chem. Soc. 2000, 122, 11537. <https://doi.org/10.1021/ja003171c>
57. Shortnacy-Fowler A. T., Tiwari K. N., Montgomery J. A., Secrist III J. A.: Nucleosides Nucleotides Nucleic Acids 2001, 20, 1583. <https://doi.org/10.1081/NCN-100105249>
58. Pal S., Bera B., Nair V.: Bioorg. Med. Chem. 2002, 10, 3615. <https://doi.org/10.1016/S0968-0896(02)00247-X>
59. Nair V., Bera B., Kern E. R.: Nucleosides Nucleotides Nucleic Acids 2001, 20, 115.
60. Nair V., Kamboj R. C.: Bioorg. Med. Chem. Lett. 2003, 13, 645. <https://doi.org/10.1016/S0960-894X(02)01053-3>
61. Nair V., Turner G. A., Chamberlain S. D.: J. Am. Chem. Soc. 1987, 109, 7223. <https://doi.org/10.1021/ja00257a071>
62. Nair V., Ussery M. A.: Antiviral Res. 1992, 19, 173. <https://doi.org/10.1016/0166-3542(92)90076-H>
63. Ciuffreda P., Loseto A., Santaniello E.: Tetrahedron: Asymmetry 2002, 13, 239. <https://doi.org/10.1016/S0957-4166(02)00080-0>
64. Ciuffreda P., Loseto A., Santaniello E.: Tetrahedron 2002, 58, 5767. <https://doi.org/10.1016/S0040-4020(02)00575-6>
65. Prasad A. K., Wengel J.: Nucleosides Nucleotides 1996, 15, 1347. <https://doi.org/10.1080/07328319608002435>
66. Okuyama K., Shibuya S., Hamamoto T., Noguchi T.: Biosci., Biotechnol., Biochem. 2003, 67, 989. <https://doi.org/10.1271/bbb.67.989>
67. Margolin A. L., Borcherding D. R., Wolf-Kugel D., Margolin N. A.: J. Org. Chem. 1994, 59, 7214. <https://doi.org/10.1021/jo00103a010>
68. Ciuffreda P., Loseto A., Alessandrini L., Terraneo G., Santaniello E.: Eur. J. Org. Chem. 2003, 4748. <https://doi.org/10.1002/ejoc.200300435>
69. Ciuffreda P., Buzzi B., Alessandrini L., Santaniello E.: Eur. J. Org. Chem. 2004, 4405. <https://doi.org/10.1002/ejoc.200400380>
70. Cappellacci L., Barboni G., Palmieri M., Pasqualini M., Grifantini M., Costa B., Martini C., Franchetti P.: J. Med. Chem. 2002, 45, 1196. <https://doi.org/10.1021/jm0102755>
71. Ciuffreda P., Loseto A., Santaniello E.: Tetrahedron: Asymmetry 2004, 15, 203. <https://doi.org/10.1016/j.tetasy.2003.11.007>
72. Gupta M., Nair V.: Tetrahedron Lett. 2005, 46, 1165. <https://doi.org/10.1016/j.tetlet.2004.12.065>