Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2006, 71, 443-531
https://doi.org/10.1135/cccc20060443

The World of Non-Covalent Interactions: 2006

Pavel Hobzaa,*, Rudolf Zahradníkb and Klaus Müller-Dethlefsc,*

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague 6, Czech Republic
b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic
c The Photon Science Institute, The University of Manchester, Simon Building, Manchester M13 9PL, United Kingdom

Crossref Cited-by Linking

  • Wang Xin, Cheng Yuwei, Li Qingzhong, Scheiner Steve: Triel Bonds with Methyl Groups as Electron Donors. A Pentacoordinate Carbon Atom. ChemPhysChem 2024. <https://doi.org/10.1002/cphc.202400931>
  • Chekkal Faiza, Naili Noura, Benaissa Amina, Zerizer Mohamed Amine, Zouchoune Bachir, Redjem Nawel: A proposed process for trichlorfon and β-cyclodextrinInclusion complexation by DFT investigation. Struct Chem 2024, 35, 1539. <https://doi.org/10.1007/s11224-024-02300-w>
  • Balcı Fatime Mine, Uras-Aytemiz Nevin: Isomeric forms of 1,4-dioxane in a microsolvation environment. Computational and Theoretical Chemistry 2024, 1236, 114587. <https://doi.org/10.1016/j.comptc.2024.114587>
  • Hassan Sara A., Zaater Marwa A., Abdel-Rahman Islam M., Ibrahim Elsayed A., El Kerdawy Ahmed M., Abouelmagd Sara A.: Piperine solubility enhancement via DES formation: Elucidation of intermolecular interactions and impact of counterpart structure via computational and spectroscopic approaches. International Journal of Pharmaceutics 2024, 667, 124893. <https://doi.org/10.1016/j.ijpharm.2024.124893>
  • Moharana Prajna, Santosh G.: Controlled aggregation of unsymmetrical amphiphilic perylene diimide derivative into nanosheets. Journal of Molecular Structure 2024, 1307, 138026. <https://doi.org/10.1016/j.molstruc.2024.138026>
  • Jezuita Anna, Wieczorkiewicz Paweł A., Krygowski Tadeusz M., Szatylowicz Halina: Proximity effects: Structural implications and quantum-chemical description. Review. Journal of Molecular Structure 2024, 1310, 138283. <https://doi.org/10.1016/j.molstruc.2024.138283>
  • Banik Subham, Boro Mridul, Gomila Rosa M., Barcelo-Oliver Miquel, Frontera Antonio, Bhattacharyya Manjit K.: Supramolecular assemblies involving unusual N(nitrile)∙∙∙π(fum) and nitrile-nitrile non-covalent contacts in fumarato and succinato bridged polymers of Co(II) and Ni(II): Experimental and theoretical studies. Journal of Molecular Structure 2024, 1314, 138781. <https://doi.org/10.1016/j.molstruc.2024.138781>
  • Hazra Suman, Majumdar Dhrubajyoti, Frontera Antonio, Roy Sourav, Gassoumi Bouzid, Ghalla Houcine, Dalai Sudipta: On the Significant Importance of Hg···Cl Spodium Bonding/σ/π-Hole/Noncovalent Interactions and Nanoelectronic/Conductivity Applications in Mercury Complexes: Insights from DFT Spectrum. Crystal Growth & Design 2024, 24, 7246. <https://doi.org/10.1021/acs.cgd.4c00893>
  • Tkachenko Nikolay V., Head-Gordon Martin: Smoother Semiclassical Dispersion for Density Functional Theory via D3S: Understanding and Addressing Unphysical Minima in the D3 Dispersion Correction Model. J. Chem. Theory Comput. 2024, 20, 9741. <https://doi.org/10.1021/acs.jctc.4c01105>
  • Parmar Saurav, Lodowski Piotr, Kozlowski Pawel M.: Photochemical Mechanism of Co–C Bond Activation via Triplet Energy Transfer in Ethyl(aqua)cobaloxime. J. Phys. Chem. A 2024, 128, 7747. <https://doi.org/10.1021/acs.jpca.4c02091>
  • Deb Basudha, Mahanta Himashree, Baruah Netra Prava, Khardewsaw Maitjingshai, Paul Amit Kumar: On the intramolecular vibrational energy redistribution dynamics of aromatic complexes: A comparative study on C6H6–C6H5Cl, C6H6–C6H3Cl3, C6H6–C6Cl6 and C6H6–C6H5F, C6H6–C6H3F3, C6H6–C6F6. The Journal of Chemical Physics 2024, 160. <https://doi.org/10.1063/5.0174748>
  • McDowell Sean A. C., Edwards Kodi A.: Relative Cooperative Effects of Non-Covalent Interactions on Hydrogen Bonds in Model Y…HCN/HNC…XF Trimers (Y = FB, OC, N2, CO, BF; XF = HF, LiF, BeF2, BF3, ClF, PH2F, SF2, SiH3F). Crystals 2024, 14, 111. <https://doi.org/10.3390/cryst14020111>
  • Boro Mridul, Baishya Trishnajyoti, Frontera Antonio, Barceló-Oliver Miquel, Bhattacharyya Manjit K.: Energetic Features of H-Bonded and π-Stacked Assemblies in Pyrazole-Based Coordination Compounds of Mn(II) and Cu(II): Experimental and Theoretical Studies. Crystals 2024, 14, 318. <https://doi.org/10.3390/cryst14040318>
  • Banik Subham, Baishya Trishnajyoti, Gomila Rosa M., Frontera Antonio, Barcelo-Oliver Miquel, Verma Akalesh K., Das Jumi, Bhattacharyya Manjit K.: ‘Charge Reverse’ Halogen Bonding Contacts in Metal-Organic Multi-Component Compounds: Antiproliferative Evaluation and Theoretical Studies. Inorganics 2024, 12, 111. <https://doi.org/10.3390/inorganics12040111>
  • Kováčová Andrea, Michalík Martin, Lukeš Vladimír: On energetics of proton and electron transfer of selected phenol derivatives: Theoretical investigation of radical and oxonium cations. Int J of Quantum Chemistry 2023, 123. <https://doi.org/10.1002/qua.27176>
  • Vasconcellos L. C., de Carvalho E. F. V., Roberto-Neto O.: Hydrogen physisorption on the (BeO)n, B2H4(Be,Ti), and B6Ti3 metal clusters: a computational study of energies and atomic charges. J Mol Model 2023, 29. <https://doi.org/10.1007/s00894-022-05432-0>
  • AL-DARKAZALI Waleed N., HACHIM Omar: Molecular dynamics simulations of supramolecular complexes under influence of an external force. Chinese Journal of Analytical Chemistry 2023, 51, 100332. <https://doi.org/10.1016/j.cjac.2023.100332>
  • Ramasami Ponnadurai, Ford Thomas A.: An ab initio study of the structural, vibrational and electronic properties of some tetrel-bonded complexes of methane and tetrafluoromethane. Computational and Theoretical Chemistry 2023, 1220, 114021. <https://doi.org/10.1016/j.comptc.2023.114021>
  • Moharana Prajna, Santosh G.: Amphiphilic perylene diimide-based fluorescent hemispherical aggregates as probes for metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 297, 122696. <https://doi.org/10.1016/j.saa.2023.122696>
  • Wang Xin, Li Qingzhong, Scheiner Steve: Cooperativity between H-bonds and tetrel bonds. Transformation of a noncovalent C⋯N tetrel bond to a covalent bond. Phys. Chem. Chem. Phys. 2023, 25, 29738. <https://doi.org/10.1039/D3CP04430K>
  • Kizior Beata, Michalczyk Mariusz, Panek Jarosław J., Zierkiewicz Wiktor, Jezierska Aneta: Unraveling the Nature of Hydrogen Bonds of “Proton Sponges” Based on Car-Parrinello and Metadynamics Approaches. IJMS 2023, 24, 1542. <https://doi.org/10.3390/ijms24021542>
  • Majerz Irena, Krawczyk Marta S.: Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH. IJMS 2023, 24, 1745. <https://doi.org/10.3390/ijms24021745>
  • Badorrek Jan, Walter Michael: Computational study on noncovalent interactions between (n, n) single‐walled carbon nanotubes and simple lignin model‐compounds. J Comput Chem 2022, 43, 340. <https://doi.org/10.1002/jcc.26794>
  • Schneider Hans‐Jörg: Noncovalent interactions: A brief account of a long history. J of Physical Organic Chem 2022, 35. <https://doi.org/10.1002/poc.4340>
  • Mollazadeh Shirin, Babaei Saeed, Ostadhassan Mehdi, Yazdian-Robati Rezvan: Concentration-dependent assembly of Bovine serum albumin molecules in the doxorubicin loading process: Molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 640, 128429. <https://doi.org/10.1016/j.colsurfa.2022.128429>
  • Peluso Paola, Chankvetadze Bezhan: Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem. Rev. 2022, 122, 13235. <https://doi.org/10.1021/acs.chemrev.1c00846>
  • Moharana Prajna, Santosh G.: Organogels Fabricated from Self-Assembled Nanotubes Containing Core Substituted Perylene Diimide Derivative. ACS Omega 2022, 7, 21932. <https://doi.org/10.1021/acsomega.2c02210>
  • Majumdar Dhrubajyoti, Frontera A., Gomila Rosa M., Das Sourav, Bankura Kalipada: Synthesis, spectroscopic findings and crystal engineering of Pb(ii)–Salen coordination polymers, and supramolecular architectures engineered by σ-hole/spodium/tetrel bonds: a combined experimental and theoretical investigation. RSC Adv. 2022, 12, 6352. <https://doi.org/10.1039/D1RA09346K>
  • Lambert Ethan C., Williams Ashley E., Fortenberry Ryan C., Hammer Nathan I.: Probing halogen bonding interactions between heptafluoro-2-iodopropane and three azabenzenes with Raman spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 2022, 24, 11713. <https://doi.org/10.1039/D2CP00463A>
  • Jurásková Veronika, Célerse Frederic, Laplaza Ruben, Corminboeuf Clemence: Assessing the persistence of chalcogen bonds in solution with neural network potentials. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0085153>
  • Rezaei Zahra, Solimannejad Mohammad, Atashzar Seyyed Mahdi, Esrafili Mehdi D.: Systematic study of cooperative interplay between single-electron pnicogen bond and halogen bond in X3C···PH2Y···ClY (X=H, CH3; Y=CN, NC) complexes in two different minima configuration. Molecular Physics 2022, 120. <https://doi.org/10.1080/00268976.2021.2014588>
  • Mahmoudi Ghodrat, García-Santos Isabel, Pittelkow Michael, Kamounah Fadhil S., Zangrando Ennio, Babashkina Maria G., Frontera Antonio, Safin Damir A.: The tetrel bonding role in supramolecular aggregation of lead(II) acetate and a thiosemicarbazide derivative. Acta Crystallogr B Struct Sci Cryst Eng Mater 2022, 78, 685. <https://doi.org/10.1107/S2052520622005789>
  • Lebedeva N. Sh., Koifman O. I.: Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. Russ J Bioorg Chem 2022, 48, 1. <https://doi.org/10.1134/S1068162022010071>
  • Zhang Yi-Liang, Li Bin: Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics. IJMS 2022, 23, 13944. <https://doi.org/10.3390/ijms232213944>
  • Jezierska Aneta, Panek Jarosław J., Błaziak Kacper, Raczyński Kamil, Koll Aleksander: Exploring Intra- and Intermolecular Interactions in Selected N-Oxides—The Role of Hydrogen Bonds. Molecules 2022, 27, 792. <https://doi.org/10.3390/molecules27030792>
  • Sideek Sarah A., El-Nassan Hala B., Fares Ahmed R., ElMeshad Aliaa N., Elkasabgy Nermeen A.: Different Curcumin-Loaded Delivery Systems for Wound Healing Applications: A Comprehensive Review. Pharmaceutics 2022, 15, 38. <https://doi.org/10.3390/pharmaceutics15010038>
  • Montero-Campillo M. Merced, Mó Otilia, Yáñez Manuel: Malonaldehyde-like Systems: BeF2 Clusters—A Subtle Balance between Hydrogen Bonds, Beryllium Bonds, and Resonance. Sci 2022, 4, 7. <https://doi.org/10.3390/sci4010007>
  • Calabrese Camilla, Temelso Berhane, Usabiaga Imanol, Seifert Nathan A., Basterretxea Francisco J., Prampolini Giacomo, Shields George C., Pate Brooks H., Evangelisti Luca, Cocinero Emilio J.: The Role of Non‐Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane. Angewandte Chemie 2021, 133, 17031. <https://doi.org/10.1002/ange.202103900>
  • Calabrese Camilla, Temelso Berhane, Usabiaga Imanol, Seifert Nathan A., Basterretxea Francisco J., Prampolini Giacomo, Shields George C., Pate Brooks H., Evangelisti Luca, Cocinero Emilio J.: The Role of Non‐Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane. Angew Chem Int Ed 2021, 60, 16894. <https://doi.org/10.1002/anie.202103900>
  • Kataria Ramesh, Vashisht Devika, Rani Payal, Sindhu Jayant, Kumar Sunil, Sharma Shikha, Sahoo Subash C., Kumar Vinod, Kumar Mehta Surinder: Experimental and Computational Validation of Structural Features and BSA Binding Tendency of 5‐Hydroxy‐5‐trifluoromethyl‐3‐arylpyrazolines**. ChemistrySelect 2021, 6, 10324. <https://doi.org/10.1002/slct.202102669>
  • Ghasemian Motaleb, Japelaghi Soghra: The theoretical investigation of intermolecular interactions between iminophosphorane and HSX (X = F, Cl and Br). J IRAN CHEM SOC 2021, 18, 139. <https://doi.org/10.1007/s13738-020-02013-x>
  • Mahmoudi Ghodrat, Zangrando Ennio, Miroslaw Barbara, Gurbanov Atash V., Babashkina Maria G., Frontera Antonio, Safin Damir A.: Spodium bonding and other non-covalent interactions assisted supramolecular aggregation in a new mercury(II) complex of a nicotinohydrazide derivative. Inorganica Chimica Acta 2021, 519, 120279. <https://doi.org/10.1016/j.ica.2021.120279>
  • Sosulin Ilya S., Lukianova Mariia A., Volosatova Anastasia D., Drabkin Vladimir D., Kameneva Svetlana V.: A matrix isolation and Ab initio study on C2H6…HCN complex: An unusual example of hydrogen bonding. Journal of Molecular Structure 2021, 1231, 129910. <https://doi.org/10.1016/j.molstruc.2021.129910>
  • Sharma Pranay, Dutta Debasish, Gomila Rosa M., Frontera Antonio, Barcelo-Oliver Miquel, Verma Akalesh K., Bhattacharyya Manjit K.: Benzoato bridged dinuclear Mn(II) and Cu(II) compounds involving guest chlorobenzoates and dimeric paddle wheel supramolecular assemblies: Antiproliferative evaluation and theoretical studies. Polyhedron 2021, 208, 115409. <https://doi.org/10.1016/j.poly.2021.115409>
  • Mahanta Himashree, Paul Amit K.: Unimolecular Dissociation of C6H6–C6Cl6 Complex and Effect of Mode–Mode Coupling. J. Phys. Chem. A 2021, 125, 5870. <https://doi.org/10.1021/acs.jpca.1c01851>
  • Donchev Alexander G., Taube Andrew G., Decolvenaere Elizabeth, Hargus Cory, McGibbon Robert T., Law Ka-Hei, Gregersen Brent A., Li Je-Luen, Palmo Kim, Siva Karthik, Bergdorf Michael, Klepeis John L., Shaw David E.: Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci Data 2021, 8. <https://doi.org/10.1038/s41597-021-00833-x>
  • Bhattacharyya Surjendu, Ghosh Sanat, Wategaonkar Sanjay: O–H stretching frequency red shifts do not correlate with the dissociation energies in the dimethylether and dimethylsulfide complexes of phenol derivatives. Phys. Chem. Chem. Phys. 2021, 23, 5718. <https://doi.org/10.1039/D0CP01589J>
  • Schouder Constant, Chatterley Adam S, Johny Melby, Hübschmann Flora, Al-Refaie Ahmed F, Calvo Florent, Küpper Jochen, Stapelfeldt Henrik: Laser-induced Coulomb explosion imaging of (C6H5Br)2 and C6H5Br–I2 dimers in helium nanodroplets using a Tpx3Cam. J. Phys. B: At. Mol. Opt. Phys. 2021, 54, 184001. <https://doi.org/10.1088/1361-6455/ac04c4>
  • Shiryaev Alexey A., Burkhanova Tatyana M., Mitoraj Mariusz P., Kukulka Mercedes, Sagan Filip, Mahmoudi Ghodrat, Babashkina Maria G., Bolte Michael, Safin Damir A.: Supramolecular structures of NiII and CuII with the sterically demanding Schiff base dyes driven by cooperative action of preagostic and other non-covalent interactions. IUCrJ 2021, 8, 351. <https://doi.org/10.1107/S2052252521000610>
  • Jezierska Aneta, Błaziak Kacper, Klahm Sebastian, Lüchow Arne, Panek Jarosław J.: Non-Covalent Forces in Naphthazarin—Cooperativity or Competition in the Light of Theoretical Approaches. IJMS 2021, 22, 8033. <https://doi.org/10.3390/ijms22158033>
  • Kułacz Karol, Pocheć Michał, Jezierska Aneta, Panek Jarosław J.: Naphthazarin Derivatives in the Light of Intra- and Intermolecular Forces. Molecules 2021, 26, 5642. <https://doi.org/10.3390/molecules26185642>
  • Østrøm Ina, Ortolan Alexandre O., Caramori Giovanni F., Mascal Mark, Muñoz‐Castro Alvaro, Parreira Renato L. T.: In Silico Design of Cylindrophanes: The Role of Functional Groups in a Fluoride Selective Host. ChemPhysChem 2020, 21, 1989. <https://doi.org/10.1002/cphc.202000321>
  • Ay Burak, Yildiz Emel, Şahin Onur, Mahmoudi Ghodrat, Kubicki Maciej, Perumal Venkatesan, Percino Judith, Miroslaw Barbara, Safin Damir A.: Novel lanthanide(III) complex [LaL2(NO3) (H2O)2]·5H2O with 2-pyridine carboxaldehyde isonicotinoyl hydrazine exhibiting a 3D supramolecular topology 3,6T49. Journal of Molecular Structure 2020, 1212, 128151. <https://doi.org/10.1016/j.molstruc.2020.128151>
  • Nguyen Brian D., Chen Guo P., Agee Matthew M., Burow Asbjörn M., Tang Matthew P., Furche Filipp: Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. J. Chem. Theory Comput. 2020, 16, 2258. <https://doi.org/10.1021/acs.jctc.9b01176>
  • Akbari Afkhami Farhad, Mahmoudi Ghodrat, Qu Fengrui, Gupta Arunava, Köse Muhammet, Zangrando Ennio, Zubkov Fedor I., Alkorta Ibon, Safin Damir A.: Supramolecular lead(ii) architectures engineered by tetrel bonds. CrystEngComm 2020, 22, 2389. <https://doi.org/10.1039/D0CE00102C>
  • Mahmoudi Ghodrat, Masoudiasl Ardavan, Babashkina Maria G., Frontera Antonio, Doert Thomas, White Jonathan M., Zangrando Ennio, Zubkov Fedor I., Safin Damir A.: On the importance of π-hole spodium bonding in tricoordinated HgII complexes. Dalton Trans. 2020, 49, 17547. <https://doi.org/10.1039/D0DT03938A>
  • Mahmoudi Ghodrat, Lawrence Simon E., Cisterna Jonathan, Cárdenas Alejandro, Brito Iván, Frontera Antonio, Safin Damir A.: A new spodium bond driven coordination polymer constructed from mercury(ii) azide and 1,2-bis(pyridin-2-ylmethylene)hydrazine. New J. Chem. 2020, 44, 21100. <https://doi.org/10.1039/D0NJ04444J>
  • Campetella Marco, De Mitri Nicola, Prampolini Giacomo: Automated parameterization of quantum-mechanically derived force-fields including explicit sigma holes: A pathway to energetic and structural features of halogen bonds in gas and condensed phase. The Journal of Chemical Physics 2020, 153. <https://doi.org/10.1063/5.0014280>
  • EREN Dilara, YALÇIN İsmail: THE AIM OF IMPLEMENTATION OF THE MOLECULAR MECHANIC AND THE MOLECULAR DYNAMIC METHODS IN RATIONAL DRUG DESIGN. Ankara Universitesi Eczacilik Fakultesi Dergisi 2020, 334. <https://doi.org/10.33483/jfpau.688351>
  • Mahmoudi Ghodrat, Abedi Marjan, Lawrence Simon E., Zangrando Ennio, Babashkina Maria G., Klein Axel, Frontera Antonio, Safin Damir A.: Tetrel Bonding and Other Non-Covalent Interactions Assisted Supramolecular Aggregation in a New Pb(II) Complex of an Isonicotinohydrazide. Molecules 2020, 25, 4056. <https://doi.org/10.3390/molecules25184056>
  • Sosulin Ilya S., Tyurin Daniil A., Feldman Vladimir I.: CHF3…H2O complex revisited: a matrix isolation and ab initio study. Struct Chem 2019, 30, 559. <https://doi.org/10.1007/s11224-018-1232-z>
  • Fedorov Alexey Yu., Drebushchak Tatiana N., Tantardini Christian: Seeking the best model for non-covalent interactions within the crystal structure of meloxicam. Computational and Theoretical Chemistry 2019, 1157, 47. <https://doi.org/10.1016/j.comptc.2019.04.012>
  • Bayach Imene, D’Aleó Anthony, Trouillas Patrick: Tuning Optical Properties of Chalcone Derivatives: A Computational Study. J. Phys. Chem. A 2019, 123, 194. <https://doi.org/10.1021/acs.jpca.8b08529>
  • Cacelli Ivo, Lipparini Filippo, Greff da Silveira Leandro, Jacobs Matheus, Livotto Paolo Roberto, Prampolini Giacomo: Accurate interaction energies by spin component scaled Möller-Plesset second order perturbation theory calculations with optimized basis sets (SCS-MP2 mod ): Development and application to aromatic heterocycles. The Journal of Chemical Physics 2019, 150. <https://doi.org/10.1063/1.5094288>
  • Schouder Constant, Chatterley Adam S., Calvo Florent, Christiansen Lars, Stapelfeldt Henrik: Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization. Structural Dynamics 2019, 6, 044301. <https://doi.org/10.1063/1.5118005>
  • Ohno Koichi, Kodaya Yoshitomo, Yamakado Hideo: Quantum chemical exploration of formaldehyde clusters (H2CO)n (n = 2–4). J Comput Chem 2018, 39, 1498. <https://doi.org/10.1002/jcc.25220>
  • Lin Xuan Hao, Aik Shalen Xue Ling, Angkasa Jacelyn, Le Qihui, Chooi Kah Sing, Li Sam Fong Yau: Selective and sensitive sensors based on molecularly imprinted poly(vinylidene fluoride) for determination of pesticides and chemical threat agent simulants. Sensors and Actuators B: Chemical 2018, 258, 228. <https://doi.org/10.1016/j.snb.2017.11.070>
  • Kratochvílová I., Šebera J., Paruzel B., Pfleger J., Toman P., Marešová E., Havlová Š., Hubík P., Buryi M., Vrňata M., Słota R., Zakrzyk M., Lančok J., Novotný M.: Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field. Synthetic Metals 2018, 236, 68. <https://doi.org/10.1016/j.synthmet.2018.01.007>
  • Jacobs Matheus, Greff Da Silveira Leandro, Prampolini Giacomo, Livotto Paolo Roberto, Cacelli Ivo: Interaction Energy Landscapes of Aromatic Heterocycles through a Reliable yet Affordable Computational Approach. J. Chem. Theory Comput. 2018, 14, 543. <https://doi.org/10.1021/acs.jctc.7b00602>
  • Thirman Jonathan, Engelage Elric, Huber Stefan M., Head-Gordon Martin: Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis. Phys. Chem. Chem. Phys. 2018, 20, 905. <https://doi.org/10.1039/C7CP06959F>
  • Murray Jane S., Politzer Peter: Molecular electrostatic potentials and noncovalent interactions. WIREs Comput Mol Sci 2017, 7. <https://doi.org/10.1002/wcms.1326>
  • Tang Jing, Liu Yongjia, Zhu Bangshang, Su Yue, Zhu Xinyuan: Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Applied Surface Science 2017, 393, 299. <https://doi.org/10.1016/j.apsusc.2016.10.015>
  • Barone Vincenzo, Cacelli Ivo, Ferretti Alessandro, Prampolini Giacomo: Noncovalent Interactions in the Catechol Dimer. Biomimetics 2017, 2, 18. <https://doi.org/10.3390/biomimetics2030018>
  • Ji Li Fei, Li An Yong, Li Zhuo Zhe, Ge Zhi Xing: Substituent effects on the properties of the hemi-bonded complexes (XH2P···NH2Y)+ (X, Y=H, F, Cl, Br, NH2, CH3, OH). J Mol Model 2016, 22. <https://doi.org/10.1007/s00894-015-2876-x>
  • McDowell Sean A.C., Fiedler Christine S.: A computational study of beryllium-bonded H 2 Be⋯FNgH/FKrCl (Ng = Ar, Kr) dyads and their intermolecular interactions with the model nucleophiles F − , NH 3 and NCH. Computational and Theoretical Chemistry 2016, 1084, 150. <https://doi.org/10.1016/j.comptc.2016.03.028>
  • Řezáč Jan, Hobza Pavel: Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038. <https://doi.org/10.1021/acs.chemrev.5b00526>
  • Montero Raúl, León Iker, Fernández José A., Longarte Asier: Femtosecond Excited State Dynamics of Size Selected Neutral Molecular Clusters. J. Phys. Chem. Lett. 2016, 7, 2797. <https://doi.org/10.1021/acs.jpclett.6b00997>
  • McDowell Sean A. C., Maynard Satoria J.: A computational study of model hydrogen-, halogen-, beryllium- and magnesium-bonded complexes of aziridine derivatives. Molecular Physics 2016, 114, 1609. <https://doi.org/10.1080/00268976.2016.1142128>
  • Brea Oriana, Mó Otilia, Yáñez Manuel, Alkorta Ibon, Elguero José: Creating σ‐Holes through the Formation of Beryllium Bonds. Chemistry A European J 2015, 21, 12676. <https://doi.org/10.1002/chem.201500981>
  • Esrafili Mehdi D., Mohammadian-Sabet Fariba: Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 2015, 21. <https://doi.org/10.1007/s00894-015-2613-5>
  • Jara-Cortés Jesús, Rocha-Rinza Tomás, Hernández-Trujillo Jesús: Electron density analysis of aromatic complexes in excited electronic states: The benzene and naphthalene excimers. Computational and Theoretical Chemistry 2015, 1053, 220. <https://doi.org/10.1016/j.comptc.2014.09.031>
  • Akimenko S.S., Gorbunov V.A., Myshlyavtsev A.V., Fefelov V.F.: Self-organization of monodentate organic molecules on a solid surface — A Monte Carlo and transfer-matrix study. Surface Science 2015, 639, 89. <https://doi.org/10.1016/j.susc.2015.05.001>
  • West Aaron C., Schmidt Michael W., Gordon Mark S., Ruedenberg Klaus: A Comprehensive Analysis in Terms of Molecule-Intrinsic Quasi-Atomic Orbitals. IV. Bond Breaking and Bond Forming along the Dissociative Reaction Path of Dioxetane. J. Phys. Chem. A 2015, 119, 10376. <https://doi.org/10.1021/acs.jpca.5b03402>
  • Saha Soumen, Sastry G. Narahari: Cooperative or Anticooperative: How Noncovalent Interactions Influence Each Other. J. Phys. Chem. B 2015, 119, 11121. <https://doi.org/10.1021/acs.jpcb.5b03005>
  • Thirman Jonathan, Head-Gordon Martin: An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4929479>
  • Pastorczak Ewa, Prlj Antonio, Gonthier Jérôme F., Corminboeuf Clémence: Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4936830>
  • McDowell Sean A.C., Holder Zandel L.: Computational study of non-covalent interactions in oxirane…XF complexes (X = H, F, Cl, Br, Li) and their F-/Li-substituted analogues. Molecular Physics 2015, 113, 3757. <https://doi.org/10.1080/00268976.2015.1061152>
  • Biswal Himansu S., Bhattacharyya Surjendu, Bhattacherjee Aditi, Wategaonkar Sanjay: Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. International Reviews in Physical Chemistry 2015, 34, 99. <https://doi.org/10.1080/0144235X.2015.1022946>
  • Montero‐Campillo M. Merced, Yáñez Manuel, Lamsabhi Al Mokhtar, Mó Otilia: Spontaneous H2 Loss through the Interaction of Squaric Acid Derivatives and BeH2. Chemistry A European J 2014, 20, 5309. <https://doi.org/10.1002/chem.201304259>
  • Hansen Andreas, Bannwarth Christoph, Grimme Stefan, Petrović Predrag, Werlé Christophe, Djukic Jean-Pierre: The Thermochemistry of London Dispersion‐Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’. ChemistryOpen 2014, 3, 177. <https://doi.org/10.1002/open.201402017>
  • Howard J. Coleman, Tschumper Gregory S.: Wavefunction methods for the accurate characterization of water clusters. WIREs Comput Mol Sci 2014, 4, 199. <https://doi.org/10.1002/wcms.1168>
  • Esrafili Mehdi D., Vakili Mahshad, Solimannejad Mohammad: Theoretical study of the complementarity in halogen–bonded complexes involving nitrogen and halogen as negative sites. J Mol Model 2014, 20. <https://doi.org/10.1007/s00894-014-2101-3>
  • Esrafili Mehdi D., Juyban Parisa: CNXeCl and CNXeBr species as halogen bond donors: a quantum chemical study on the structure, properties, and nature of halogen···nitrogen interactions. J Mol Model 2014, 20. <https://doi.org/10.1007/s00894-014-2203-y>
  • Esrafili Mehdi D., Vakili Mahshad: Halogen bonds enhanced by σ-hole and π-hole interactions: a comparative study on cooperativity and competition effects between X∙∙∙N and S∙∙∙N interactions in H3N∙∙∙XCN∙∙∙SF2 and H3N∙∙∙XCN∙∙∙SO2 complexes (X = F, Cl, Br and I). J Mol Model 2014, 20. <https://doi.org/10.1007/s00894-014-2291-8>
  • Zhao Jian-Ying, Zhao Feng-Qi, Xu Si-Yu, Ju Xue-Hai: Theoretical study of the geometries and decomposition energies of CO2 on Al12X: Doping effect of Al12X. Journal of Molecular Graphics and Modelling 2014, 48, 9. <https://doi.org/10.1016/j.jmgm.2013.11.002>
  • Prampolini Giacomo, Carbonaro Laura, Feng Gang, Evangelisti Luca, Caminati Walther, Cacelli Ivo: Computational Screening of Weak Hydrogen Bond Networks: Predicting Stable Structures for Difluoromethane Oligomers. J. Chem. Theory Comput. 2014, 10, 2204. <https://doi.org/10.1021/ct500148g>
  • Thirman Jonathan, Head-Gordon Martin: Electrostatic Domination of the Effect of Electron Correlation in Intermolecular Interactions. J. Phys. Chem. Lett. 2014, 5, 1380. <https://doi.org/10.1021/jz500165u>
  • Feng Gang, Evangelisti Luca, Cacelli Ivo, Carbonaro Laura, Prampolini Giacomo, Caminati Walther: Oligomers based on weak hydrogen bond networks: a rotational study of the tetramer of difluoromethane. Chem. Commun. 2014, 50, 171. <https://doi.org/10.1039/C3CC47206J>
  • Barone V., Cacelli I., Crescenzi O., d'Ischia M., Ferretti A., Prampolini G., Villani G.: Unraveling the interplay of different contributions to the stability of the quinhydrone dimer. RSC Adv. 2014, 4, 876. <https://doi.org/10.1039/C3RA46191B>
  • Aakeröy Christer B., Wijethunga Tharanga K., Haj Mohammad Abul, Desper John, Moore Curtis: The structural landscape of heteroaryl-2-imidazoles: competing halogen- and hydrogen-bond interactions. CrystEngComm 2014, 16, 7218. <https://doi.org/10.1039/C4CE00803K>
  • Pai Sung Jin, Bae Young Chan: Ab initio potential energy surface for methane and carbon dioxide and application to vapor-liquid coexistence. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4891983>
  • Bartashevich E V, Tsirelson V G: Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181. <https://doi.org/10.1070/RCR4440>
  • Solimannejad Mohammad, Rezaei Zahra, Esrafili Mehdi D.: Interplay and competition between the lithium bonding and halogen bonding: R3C···XCN···LiCN and R3C···LiCN···XCN as a working model (R = H, CH3; X = Cl, Br). Molecular Physics 2014, 112, 1783. <https://doi.org/10.1080/00268976.2013.864426>
  • Solimannejad Mohammad, Bayati Elham, Esrafili Mehdi D.: Enhancement effect of lithium bonding on the strength of pnicogen bonds: XH2P···NCLi···NCY as a working model (X = F, Cl; Y = H, F, Cl, CN). Molecular Physics 2014, 112, 2058. <https://doi.org/10.1080/00268976.2014.884250>
  • Esrafili Mehdi D., Vakili Mahshad, Solimannejad Mohammad: Cooperative interaction between π-hole and single-electron σ-hole interactions in O2S···NCX···CH3 and O2Se···NCX···CH3 complexes (X = F, Cl, Br and I). Molecular Physics 2014, 112, 2078. <https://doi.org/10.1080/00268976.2014.884730>
  • Zehnacker Anne: Chirality effects in gas-phase spectroscopy and photophysics of molecular and ionic complexes: contribution of low and room temperature studies. International Reviews in Physical Chemistry 2014, 33, 151. <https://doi.org/10.1080/0144235X.2014.911548>
  • Kraka Elfi, Freindorf Marek, Cremer Dieter: Chiral Discrimination by Vibrational Spectroscopy Utilizing Local Modes. Chirality 2013, 25, 185. <https://doi.org/10.1002/chir.22130>
  • Biswal Himansu S., Bhattacharyya Surjendu, Wategaonkar Sanjay: Molecular‐Level Understanding of Ground‐ and Excited‐State OH⋅⋅⋅O Hydrogen Bonding Involving the Tyrosine Side Chain: A Combined High‐Resolution Laser Spectroscopy and Quantum Chemistry Study. ChemPhysChem 2013, 14, 4165. <https://doi.org/10.1002/cphc.201300670>
  • Riley Kevin E., Murray Jane S., Fanfrlík Jindřich, Řezáč Jan, Solá Ricardo J., Concha Monica C., Ramos Felix M., Politzer Peter: Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 2013, 19, 4651. <https://doi.org/10.1007/s00894-012-1428-x>
  • Montero-Campillo M. Merced, Lamsabhi Al Mokhtar, Mó Otilia, Yáñez Manuel: Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2. J Mol Model 2013, 19, 2759. <https://doi.org/10.1007/s00894-012-1603-0>
  • Esrafili Mehdi D., Mohammadirad Nafiseh: Insights into the strength and nature of carbene···halogen bond interactions: a theoretical perspective. J Mol Model 2013, 19, 2559. <https://doi.org/10.1007/s00894-013-1804-1>
  • Esrafili Mehdi D., Solimannejad Mohammad: Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 2013, 19, 3767. <https://doi.org/10.1007/s00894-013-1912-y>
  • Esrafili Mehdi D., Mohammdain-Sabet Fariba, Esmailpour Parvin: Theoretical study on cooperative effects between X⋯N and X⋯Carbene halogen bonds (X = F,Cl,Br and I). J Mol Model 2013, 19, 4797. <https://doi.org/10.1007/s00894-013-1983-9>
  • Bi Fuzhen, Gao Jun, Wang Lili, Du Likai, Song Bo, Liu Chengbu: Polarization-enhanced bonding process of halogen bond, a theoretical study on F–H/F–X (X = F, Cl, Br, I) and ammonia. Chemical Physics 2013, 426, 16. <https://doi.org/10.1016/j.chemphys.2013.09.006>
  • Dolgonos Grygoriy A.: Which isomeric form of formaldehyde dimer is the most stable – a high-level coupled-cluster study. Chemical Physics Letters 2013, 585, 37. <https://doi.org/10.1016/j.cplett.2013.08.073>
  • El Kerdawy Ahmed, Tautermann Christofer S., Clark Timothy, Fox Thomas: Economical and Accurate Protocol for Calculating Hydrogen-Bond-Acceptor Strengths. J. Chem. Inf. Model. 2013, 53, 3262. <https://doi.org/10.1021/ci4006222>
  • El Kerdawy Ahmed, Murray Jane S., Politzer Peter, Bleiziffer Patrick, Heßelmann Andreas, Görling Andreas, Clark Timothy: Directional Noncovalent Interactions: Repulsion and Dispersion. J. Chem. Theory Comput. 2013, 9, 2264. <https://doi.org/10.1021/ct400185f>
  • Zhao Jian-Ying, Zhang Yu, Zhao Feng-Qi, Ju Xue-Hai: Adsorption of Carbon Dioxide on Al12X Clusters Studied by Density Functional Theory: Effect of Charge and Doping. J. Phys. Chem. A 2013, 117, 12519. <https://doi.org/10.1021/jp405934w>
  • Aguado Edurne, León Iker, Millán Judith, Cocinero Emilio Jose, Jaeqx Sander, Rijs Anouk M., Lesarri Alberto, Fernández José A.: Unraveling the Benzocaine-Receptor Interaction at Molecular Level Using Mass-Resolved Spectroscopy. J. Phys. Chem. B 2013, 130924122850. <https://doi.org/10.1021/jp4068944>
  • Eskandari K., Mahmoodabadi N.: Pnicogen Bonds: A Theoretical Study Based on the Laplacian of Electron Density. J. Phys. Chem. A 2013, 117, 13018. <https://doi.org/10.1021/jp4098974>
  • Beyhan S. Maya, Götz Andreas W., Visscher Lucas: Bond energy decomposition analysis for subsystem density functional theory. The Journal of Chemical Physics 2013, 138. <https://doi.org/10.1063/1.4793629>
  • Olivares-Quiroz L: Thermodynamics of ideal proteinogenic homopolymer chains as a function of the energy spectrumE, helical propensity ω and enthalpic energy barrier. J. Phys.: Condens. Matter 2013, 25, 155103. <https://doi.org/10.1088/0953-8984/25/15/155103>
  • Cacelli Ivo, Cimoli Antonella, Livotto Paolo Roberto, Prampolini Giacomo: An automated approach for the parameterization of accurate intermolecular force‐fields: Pyridine as a case study. J Comput Chem 2012, 33, 1055. <https://doi.org/10.1002/jcc.22937>
  • Martín-Sómer Ana, Lamsabhi Al Mokhtar, Mó Otilia, Yáñez Manuel: The importance of deformation on the strength of beryllium bonds. Computational and Theoretical Chemistry 2012, 998, 74. <https://doi.org/10.1016/j.comptc.2012.06.009>
  • Liu Yan, Wang Guixiang, Gong Xuedong: 2,4-Diazido-5-iodo-pyrimidine crystal under high pressure: A comparison of DFT and DFT-D studies. Computational and Theoretical Chemistry 2012, 1000, 60. <https://doi.org/10.1016/j.comptc.2012.09.022>
  • Ramasami Ponnadurai, Ford Thomas A.: Ab initio studies of some hydrogen-bonded complexes of fluoroform – Evidence for blue-shifted behaviour. Journal of Molecular Structure 2012, 1023, 163. <https://doi.org/10.1016/j.molstruc.2012.04.001>
  • El Kerdawy Ahmed, Wick Christian R., Hennemann Matthias, Clark Timothy: Predicting the Sites and Energies of Noncovalent Intermolecular Interactions Using Local Properties. J. Chem. Inf. Model. 2012, 52, 1061. <https://doi.org/10.1021/ci300095x>
  • Copeland Kari L., Tschumper Gregory S.: Hydrocarbon/Water Interactions: Encouraging Energetics and Structures from DFT but Disconcerting Discrepancies for Hessian Indices. J. Chem. Theory Comput. 2012, 8, 1646. <https://doi.org/10.1021/ct300132e>
  • Mó Otilia, Yáñez Manuel, Alkorta Ibon, Elguero José: Modulating the Strength of Hydrogen Bonds through Beryllium Bonds. J. Chem. Theory Comput. 2012, 8, 2293. <https://doi.org/10.1021/ct300243b>
  • Martín-Sómer Ana, Lamsabhi Al Mokhtar, Mó Otilia, Yáñez Manuel: Unexpected Acidity Enhancement Triggered by AlH3 Association to Phosphines. J. Phys. Chem. A 2012, 116, 6950. <https://doi.org/10.1021/jp304186m>
  • Carrell Emily J., Thorne Cara M., Tschumper Gregory S.: Basis set dependence of higher-order correlation effects in π-type interactions. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3671950>
  • Zins Emilie-Laure, Schröder Detlef: Influence of the structure of medium-sized aromatic precursors on the reactivity of their dications towards rare gases. Int J Mass Spectrosc 2011, 299, 53. <https://doi.org/10.1016/j.ijms.2010.09.017>
  • Liu Yan, Gong Xuedong, Wang Lianjun, Wang Guixiang: Effect of Hydrostatic Compression on Structure and Properties of 2-Diazo-4,6- Dinitrophenol Crystal: Density Functional Theory Studies. J. Phys. Chem. C 2011, 115, 11738. <https://doi.org/10.1021/jp200934e>
  • Ramos-Cordoba Eloy, Lambrecht Daniel S., Head-Gordon Martin: Charge-transfer and the hydrogen bond: Spectroscopic and structural implications from electronic structure calculations. Faraday Disc 2011, 150, 345. <https://doi.org/10.1039/c1fd00004g>
  • Varfolomeeva V. V.: Quantum-chemical study of compounds containing intramolecular O-H…O=C bond. Russ J Gen Chem 2011, 81, 1812. <https://doi.org/10.1134/S1070363211090131>
  • Keefe C. Dale, Istvankova Zuzana: Computational study of proper and improper hydrogen bonding in methanol complexes. Can. J. Chem. 2011, 89, 34. <https://doi.org/10.1139/V10-155>
  • Straka Pavel, Buryan Petr: A Study of the Behavior of Alkyl Side Chains Phenols and Arenes in Polar and Nonpolar GC Stationary Phases. AJAC 2011, 02, 324. <https://doi.org/10.4236/ajac.2011.23040>
  • Li Xu-Qing, Fan Ping: A duplex DNA model with regular inter-base-pair hydrogen bonds. J Theor Biol 2010, 266, 374. <https://doi.org/10.1016/j.jtbi.2010.07.002>
  • Riley Kevin E., Pitoňák Michal, Jurečka Petr, Hobza Pavel: Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories. Chem. Rev. 2010, 110, 5023. <https://doi.org/10.1021/cr1000173>
  • Cacelli Ivo, Cimoli Antonella, Prampolini Giacomo: Geometry Optimization of Large and Flexible van der Waals Dimers: A Fragmentation−Reconstruction Approach. J. Chem. Theory Comput. 2010, 6, 2536. <https://doi.org/10.1021/ct100172w>
  • Howard Austin A., Tschumper Gregory S., Hammer Nathan I.: Effects of Hydrogen Bonding on Vibrational Normal Modes of Pyrimidine. J. Phys. Chem. A 2010, 114, 6803. <https://doi.org/10.1021/jp101267w>
  • Taylor Christopher J., Nix Michael G. D., Dessent Caroline E. H.: Noncovalent Interactions in the Gas-Phase Conformers of Anionic Iduronate (methyl 2-O-sulfo-α-L-iduronate): Variation of Subconformer versus Ring Conformer Energetics for a Prototypical Anionic Monosaccharide Studied Using Computational Methods. J. Phys. Chem. A 2010, 114, 11153. <https://doi.org/10.1021/jp102657t>
  • Sedlák Róbert, Fanfrlík Jindřich, Hnyk Drahomír, Hobza Pavel, Lepšík Martin: Interactions of Boranes and Carboranes with Aromatic Systems: CCSD(T) Complete Basis Set Calculations and DFT-SAPT Analysis of Energy Components. J. Phys. Chem. A 2010, 114, 11304. <https://doi.org/10.1021/jp104411x>
  • Ghosh Debashree, Kosenkov Dmytro, Vanovschi Vitalii, Williams Christopher F., Herbert John M., Gordon Mark S., Schmidt Michael W., Slipchenko Lyudmila V., Krylov Anna I.: Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers. J. Phys. Chem. A 2010, 114, 12739. <https://doi.org/10.1021/jp107557p>
  • Rivera-Rivera Luis A., Wang Zhongcheng, McElmurry Blake A., Willaert Fabrice F., Lucchese Robert R., Bevan John W., Suenram Richard D., Lovas Frank J.: A ground state morphed intermolecular potential for the hydrogen bonded and van der Waals isomers in OC:HI and a prediction of an anomalous deuterium isotope effect. The Journal of Chemical Physics 2010, 133. <https://doi.org/10.1063/1.3505145>
  • Krieg Helge, Grimme Stefan: Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!. Molecular Physics 2010, 108, 2655. <https://doi.org/10.1080/00268976.2010.519729>
  • Cacelli Ivo, Lami Carlo Federico, Prampolini Giacomo: Force‐field modeling through quantum mechanical calculations: Molecular dynamics simulations of a nematogenic molecule in its condensed phases. J Comput Chem 2009, 30, 366. <https://doi.org/10.1002/jcc.21062>
  • Czy��nikowska ��aneta: On the importance of electrostatics in stabilization of stacked guanine���adenine complexes appearing in B-DNA crystals. Journal of Molecular Structure: THEOCHEM 2009, 895, 161. <https://doi.org/10.1016/j.theochem.2008.10.040>
  • Cacelli Ivo, Cimoli Antonella, De Gaetani Luca, Prampolini Giacomo, Tani Alessandro: Chemical Detail Force Fields for Mesogenic Molecules. J. Chem. Theory Comput. 2009, 5, 1865. <https://doi.org/10.1021/ct900002p>
  • Ran Jiong, Hobza Pavel: On the Nature of Bonding in Lone Pair···π-Electron Complexes: CCSD(T)/Complete Basis Set Limit Calculations. J. Chem. Theory Comput. 2009, 5, 1180. <https://doi.org/10.1021/ct900036y>
  • Korona Tatiana, Hesselmann Andreas, Dodziuk Helena: Symmetry-Adapted Perturbation Theory Applied to Endohedral Fullerene Complexes: A Stability Study of H2@C60 and 2H2@C60. J. Chem. Theory Comput. 2009, 5, 1585. <https://doi.org/10.1021/ct900108f>
  • Xue Chunxia, Popelier Paul L. A.: Prediction of Interaction Energies of Substituted Hydrogen-Bonded Watson−Crick Cytosine:Guanine8X Base Pairs. J. Phys. Chem. B 2009, 113, 3245. <https://doi.org/10.1021/jp8071926>
  • Biswal Himansu S., Shirhatti Pranav R., Wategaonkar Sanjay: O−H···O versus O−H···S Hydrogen Bonding I: Experimental and Computational Studies on the p-Cresol·H2O and p-Cresol·H2S Complexes. J. Phys. Chem. A 2009, 113, 5633. <https://doi.org/10.1021/jp9009355>
  • Šebera J., Nešpůrek S., Kratochvílová I., Záliš S., Chaidogiannos G., Glezos N.: Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: experiment and quantum chemical calculations. Eur. Phys. J. B 2009, 72, 385. <https://doi.org/10.1140/epjb/e2009-00368-y>
  • Michielsen Bart, Herrebout Wouter A., van der Veken Benjamin J.: CH bonds with a Positive Dipole Gradient Can Form Blue-Shifting Hydrogen Bonds: The Complex of Halothane with Methyl Fluoride. ChemPhysChem 2008, 9, 1693. <https://doi.org/10.1002/cphc.200800263>
  • Zürcher Martina, Diederich François: Structure-Based Drug Design: Exploring the Proper Filling of Apolar Pockets at Enzyme Active Sites. J. Org. Chem. 2008, 73, 4345. <https://doi.org/10.1021/jo800527n>
  • Cinacchi Giorgio, Prampolini Giacomo: Estimate of Benzene−Triphenylene and Triphenylene−Triphenylene Interactions: A Topic Relevant to Columnar Discotic Liquid Crystals. J. Phys. Chem. C 2008, 112, 9501. <https://doi.org/10.1021/jp0776917>
  • Xue Chunxia, Popelier Paul L. A.: Computational Study of Substituent Effects on the Interaction Energies of Hydrogen-Bonded Watson−Crick Cytosine:Guanine Base Pairs. J. Phys. Chem. B 2008, 112, 5257. <https://doi.org/10.1021/jp7108913>
  • Tong Xin, Černý Jiří, Müller-Dethlefs Klaus, Dessent Caroline E. H.: Effect of Noncovalent Interactions on Conformers of the n-Butylbenzene Monomer Studied by Mass Analyzed Threshold Ionization Spectroscopy and Basis-set Convergent ab initio Computations. J. Phys. Chem. A 2008, 112, 5866. <https://doi.org/10.1021/jp710997q>
  • Pluháčková Kristýna, Grimme Stefan, Hobza Pavel: On the Importance of Electron Correlation Effects for the Intramolecular Stacking Geometry of a Bis-Thiophene Derivative. J. Phys. Chem. A 2008, 112, 12469. <https://doi.org/10.1021/jp8051664>
  • Copeland Kari L., Anderson Julie A., Farley Adam R., Cox James R., Tschumper Gregory S.: Probing Phenylalanine/Adenine π-Stacking Interactions in Protein Complexes with Explicitly Correlated and CCSD(T) Computations. J. Phys. Chem. B 2008, 112, 14291. <https://doi.org/10.1021/jp805528v>
  • Morgado Claudio A., Hillier Ian H., Burton Neil A., McDouall Joseph J. W.: A QM/MM study of fluoroaromatic interactions at the binding site of carbonic anhydrase II, using a DFT method corrected for dispersive interactions. Phys. Chem. Chem. Phys. 2008, 10, 2706. <https://doi.org/10.1039/b715514j>
  • Bates Desiree M., Anderson Julie A., Oloyede Ponmile, Tschumper Gregory S.: Probing the effects of heterogeneity on delocalized π⋯π interaction energies. Phys. Chem. Chem. Phys. 2008, 10, 2775. <https://doi.org/10.1039/b718720c>
  • Biedermannova Lada, E. Riley Kevin, Berka Karel, Hobza Pavel, Vondrasek Jiri: Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys. Chem. Chem. Phys. 2008, 10, 6350. <https://doi.org/10.1039/b805087b>
  • Ostojić Bojana D., Janjić Goran V., Zarić Snežana D.: Parallel alignment of water and aryl rings—crystallographic and theoretical evidence for the interaction. Chem. Commun. 2008, 6546. <https://doi.org/10.1039/b812925h>
  • Vincent Mark A., Hillier Ian H., Morgado Claudio A., Burton Neil A., Shan Xiao: The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2828369>
  • Biswal Himansu S., Chakraborty Shamik, Wategaonkar Sanjay: Experimental evidence of O–H—S hydrogen bonding in supersonic jet. The Journal of Chemical Physics 2008, 129. <https://doi.org/10.1063/1.3012569>
  • Kryachko Eugene S.: Interaction of Gold Atom with Clusters of Water: Few Computational Mise-En-Scènes with Hydrogen Bonding Motif. Collect. Czech. Chem. Commun. 2008, 73, 1457. <https://doi.org/10.1135/cccc20081457>
  • Kratochvılová I., Nešprek S., Šebera J., Záliš S., Pavelka M., Wang G., Sworakowski J.: New organic FET-like photoactive device, experiments and DFT modeling. Eur. Phys. J. E 2008, 25, 299. <https://doi.org/10.1140/epje/i2007-10297-9>
  • Michielsen Bart, Herrebout Wouter A., van der Veken Benjamin J.: Intermolecular Interactions between Halothane and Dimethyl Ether: A Cryosolution Infrared and Ab Initio Study. ChemPhysChem 2007, 8, 1188. <https://doi.org/10.1002/cphc.200700126>
  • Zendlová Lucie, Hobza Pavel, Kabeláč Martin: Stability of Nucleic Acid Base Pairs in Organic Solvents:  Molecular Dynamics, Molecular Dynamics/Quenching, and Correlated Ab Initio Study. J. Phys. Chem. B 2007, 111, 2591. <https://doi.org/10.1021/jp065418j>
  • Devereux M., Popelier P. L. A.: The Effects of Hydrogen-Bonding Environment on the Polarization and Electronic Properties of Water Molecules. J. Phys. Chem. A 2007, 111, 1536. <https://doi.org/10.1021/jp067922u>
  • Kubař Tomáš, Jurečka Petr, Černý Jiří, Řezáč Jan, Otyepka Michal, Valdés Haydée, Hobza Pavel: Density-Functional, Density-Functional Tight-Binding, and Wave Function Calculations on Biomolecular Systems. J. Phys. Chem. A 2007, 111, 5642. <https://doi.org/10.1021/jp068858j>
  • Antony Jens, Grimme Stefan: Is Spin-Component Scaled Second-Order Møller−Plesset Perturbation Theory an Appropriate Method for the Study of Noncovalent Interactions in Molecules?. J. Phys. Chem. A 2007, 111, 4862. <https://doi.org/10.1021/jp070589p>
  • Bendová Lada, Jurečka Petr, Hobza Pavel, Vondrášek Jiří: Model of Peptide Bond−Aromatic Ring Interaction:  Correlated Ab Initio Quantum Chemical Study. J. Phys. Chem. B 2007, 111, 9975. <https://doi.org/10.1021/jp072859+>
  • Kabeláč Martin, Hobza Pavel: Hydration and stability of nucleic acid bases and base pairs. Phys. Chem. Chem. Phys. 2007, 9, 903. <https://doi.org/10.1039/B614420A>
  • Sredojević Dušan, Bogdanović Goran A., Tomić Zoran D., Zarić Snežana D.: Stacking vs. CH–π interactions between chelate and aryl rings in crystal structures of square-planar transition metal complexes. CrystEngComm 2007, 9, 793. <https://doi.org/10.1039/b704302c>
  • Pyykk? Pekka, Wang Cong, Straka Michal, Vaara Juha: A London-type formula for the dispersion interactions of endohedral A@B systems. Phys. Chem. Chem. Phys. 2007, 9, 2954. <https://doi.org/10.1039/b704695b>
  • Gerber I. C., Ángyán J. G.: London dispersion forces by range-separated hybrid density functional with second order perturbational corrections: The case of rare gas complexes. The Journal of Chemical Physics 2007, 126. <https://doi.org/10.1063/1.2431644>
  • Pieniazek Piotr A., Krylov Anna I., Bradforth Stephen E.: Electronic structure of the benzene dimer cation. The Journal of Chemical Physics 2007, 127. <https://doi.org/10.1063/1.2749506>
  • Rogers David M., Hirst Jonathan D., Lee Edmond P.F., Wright Timothy G.: Ab initio study of the toluene dimer. Chemical Physics Letters 2006, 427, 410. <https://doi.org/10.1016/j.cplett.2006.07.022>
  • Deakyne Carol A., Corum Aaron K., Thomas Haunani M., Liebman Joel F.: The structure and energetics of singlet, closed-shell [B, C, F, H2]: Simplicity resulting in diversity. J FLUORINE CHEM 2006, 127, 1355. <https://doi.org/10.1016/j.jfluchem.2006.07.015>
  • Antony Jens, Grimme Stefan: Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys. Chem. Chem. Phys. 2006, 8, 5287. <https://doi.org/10.1039/b612585a>