Collect. Czech. Chem. Commun. 2006, 71, 1627-1641
https://doi.org/10.1135/cccc20061627

Conformational Transitions of Ferricytochrome c in Strong Inorganic Acids

Marek Stupáka, Jaroslava Bágeľováb, Diana Fedunováb and Marián Antalíkb,c,*

a Department of Medical Chemistry and Biochemistry, Faculty of Medicine, P. J. Šafárik University, Tr. SNP 1, 040 66 Košice, Slovak Republic
b Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovak Republic
c Institute of Chemistry, Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic

References

1. Goto Y., Takahashi N., Fink A. L.: Biochemistry 1990, 29, 3480. <https://doi.org/10.1021/bi00466a009>
2. Dong A., Lam T.: Arch. Biochem. Biophys. 2005, 436, 154. <https://doi.org/10.1016/j.abb.2005.01.006>
3. Goto Y., Calciano L. J., Fink A.: Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 573. <https://doi.org/10.1073/pnas.87.2.573>
4. Elove G. A., Bhuyan A. K., Roder H.: Biochemistry 1994, 33, 6925. <https://doi.org/10.1021/bi00188a023>
5. Theorell H., Akeson A.: J. Am. Chem. Soc. 1941, 63, 1812. <https://doi.org/10.1021/ja01852a006>
6. Myer Y. P., Saturno A. F.: J. Protein Chem. 1991, 10, 481. <https://doi.org/10.1007/BF01025476>
7. Brems D. N., Cass R., Stellwagen E.: Biochemistry 1982, 21, 1488. <https://doi.org/10.1021/bi00536a004>
8. Myer Y. P., Saturno A. F.: J. Protein Chem. 1990, 9, 379. <https://doi.org/10.1007/BF01024613>
9. Hon-Nami K., Oshima T.: Biochemistry 1979, 18, 5693. <https://doi.org/10.1021/bi00592a027>
10. Stellwagen E., Babul J.: Biochemistry 1975, 14, 5135. <https://doi.org/10.1021/bi00694a018>
11. Kuroda Y., Kidokoro S., Wada A.: J. Mol. Biol. 1992, 223, 1139. <https://doi.org/10.1016/0022-2836(92)90265-L>
12. Xu Q., Keiderling T. A.: Biopolymers 2004, 73, 716. <https://doi.org/10.1002/bip.20011>
13. Sinibaldi F., Howes B. D., Smulevich G., Ciaccio C., Coletta M., Santucci R.: J. Biol. Inorg. Chem. 2003, 8, 663. <https://doi.org/10.1007/s00775-003-0462-7>
14. Santucci R., Bongiovanni C., Mei G., Ferri T., Polizio F., Desideri A.: Biochemistry 2000, 39, 12632. <https://doi.org/10.1021/bi000516v>
15. Indiani C., de Sanctis G., Neri F., Santos H., Smulevich G., Coletta M.: Biochemistry 2000, 39, 8234. <https://doi.org/10.1021/bi000266i>
16. Oellerich S., Wackerbarth H., Hildebrandt P.: J. Phys. Chem. B 2002, 106, 6566. <https://doi.org/10.1021/jp013841g>
17. Fedurco M., Augustynski J., Indiani C., Smulevich G., Antalik M., Bano M., Sedlak E., Glascock M. C., Dawson J. H.: Biochim. Biophys. Acta 2004, 1703, 31. <https://doi.org/10.1016/j.bbapap.2004.09.013>
18. Varhac R., Antalik M.: Biochemistry 2004, 43, 3564. <https://doi.org/10.1021/bi036011x>
19. Margoliash E., Frohwirt N.: Biochem. J. 1959, 71, 570. <https://doi.org/10.1042/bj0710570>
20. Acevedo O., Guzman-Casado M., Garcia-Mira M. M., Ibarra-Molero B., Sanchez-Ruiz J. M.: Anal. Biochem. 2002, 306, 158. <https://doi.org/10.1006/abio.2002.5668>
21. Shechter E., Saludjian P.: Biopolymers 1967, 5, 788. <https://doi.org/10.1002/bip.1967.360050812>
22. Robinson J. B., Jr., Strottmann J. M., Stellwagen E.: J. Biol. Chem. 1983, 258, 6772.
23. Thomas Y. G., Goldbeck R. A., Kliger D. S.: Biopolymers 2000, 57, 29. <https://doi.org/10.1002/(SICI)1097-0282(2000)57:1<29::AID-BIP5>3.0.CO;2-V>
24. Zentko S., Scarrow R. C., Wright W. W., Vanderkooi J. M.: Biospectroscopy 1999, 5, 141. <https://doi.org/10.1002/(SICI)1520-6343(1999)5:3<141::AID-BSPY4>3.0.CO;2-J>
25. Antalík M., Bágeľová J., Gažová Z., Musatov A., Fedunová D.: Biochim. Biophys. Acta 2003, 1646, 11. <https://doi.org/10.1016/S1570-9639(02)00543-5>
26. Dickerson R. E., Timkovich R. in: The Enzymes (P. D. Boyer, Ed.), Vol. XIA, p. 397. Academic Press, New York 1975.
27. Jeng M. F., Englander S. W.: J. Mol. Biol. 1991, 221, 1045. <https://doi.org/10.1016/0022-2836(91)80191-V>
28. Myer Y. P., Saturno A. F.: J. Protein Chem. 1991, 10, 481. <https://doi.org/10.1007/BF01025476>
29. Bren K. L., Gray H. B.: J. Am. Chem. Soc. 1993, 115, 10382. <https://doi.org/10.1021/ja00075a073>
30. Yoshimura T., Suzuki S., Nakahara A., Iwasaki H., Masuko M., Matsubara T.: Biochim. Biophys. Acta 1985, 831, 267. <https://doi.org/10.1016/0167-4838(85)90106-2>
31. Weber P. C., Howard A., Xuong N. H., Salemme F. R.: J. Mol. Biol. 1981, 153, 399. <https://doi.org/10.1016/0022-2836(81)90286-2>
32. Yoshimura T., Fujii S., Kamada H., Yamaguchi K., Suzuki S., Shidara S., Takakuwa S.: Biochim. Biophys. Acta 1996, 1292, 39. <https://doi.org/10.1016/0167-4838(95)00187-5>
33. Ikeda-Saito M., Hori H., Andersson L. A., Prince R. C., Pickering I. J., George G. N., Sanders C. R., Lutz R. S., McKelvey E. J., Mattera R.: J. Biol. Chem. 1992, 267, 22843.
34. Tsong T. Y.: Biochemistry 1975, 14, 1542. <https://doi.org/10.1021/bi00678a031>
35. Yeh S. R., Takahashi S., Fan B., Rousseau D. L.: Nat. Struct. Biol. 1997, 4, 51. <https://doi.org/10.1038/nsb0197-51>