Collect. Czech. Chem. Commun.
2006, 71, 1484-1496
https://doi.org/10.1135/cccc20061484
Cytostatic and Antiviral 6-Arylpurine Ribonucleosides VIII. Synthesis and Evaluation of 6-Substituted Purine 3'-Deoxyribonucleosides
Michal Hocek*, Peter Šilhár and Radek Pohl
Gilead Sciences & IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
References
1. J. Med. Chem. 1968, 11, 48.
< J. A., Hewson K.: https://doi.org/10.1021/jm00307a010>
2a. Org. Lett. 2004, 6, 3225.
< P., Pohl R., Votruba I., Hocek M.: https://doi.org/10.1021/ol049059r>
2b. Collect. Czech. Chem. Commun. 2005, 70, 1669.
< P., Pohl R., Votruba I., Hocek M.: https://doi.org/10.1135/cccc20051669>
3. Org. Biomol. Chem. 2005, 3, 3001.
< P., Pohl R., Votruba I., Hocek M.: https://doi.org/10.1039/b508122j>
4. Synthesis 2006, 1848.
P., Pohl R., Votruba I., Hocek M.:
5. Tetrahedron 1999, 55, 11109.
< D., Hocek M., Dvořáková H., Votruba I.: https://doi.org/10.1016/S0040-4020(99)00615-8>
6a. J. Med. Chem. 2000, 43, 1817.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1021/jm991167+>
6b. Collect. Czech. Chem. Commun. 2001, 66, 483.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1135/cccc20010483>
7. J. Med. Chem. 2005, 48, 5869.
< M., Nauš P., Pohl R., Votruba I., Furman P. A., Tharnish P. M., Otto M. J.: https://doi.org/10.1021/jm050335x>
8. Collect. Czech. Chem. Commun. 2000, 65, 1683.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1135/cccc20001683>
9. Bioorg. Med. Chem. Lett. 2005, 15, 709.
< Y., Girardet J.-L., Hong Z., Lai V. C. H., An H., Koh Y.-H., Shaw S. Z., Zhong W.: https://doi.org/10.1016/j.bmcl.2004.11.020>
10. Synthesis 2002, 1084.
< F., Garcia-Mera X., Morales M., Rodriguez-Borges J., De Clercq E.: https://doi.org/10.1055/s-2002-31956>
11. Bioorg. Med. Chem. Lett. 2006, 16, 5290.
< M., Šilhár P., Shih I., Mabery E., Mackman R.: https://doi.org/10.1016/j.bmcl.2006.07.092>
12. Antiviral Res. 1986, 6, 103.
A., Hansson B. G., Oberg B., Nordenfelt E.:
13a. J. Med. Chem. 1965, 8, 664.
< C. O., Burg R. W., Boxer G. E., Meltz D., Hitt J.: https://doi.org/10.1021/jm00329a023>
13b. J. Med. Chem. 1991, 34, 693.
< T.-S., Yang J.-H., Liu M.-C., Shen Z.-Y., Cheng Y.-C., Prusoff W. H., Birnbaum G. I., Giziewicz J., Ghazzouli I., Brankovan V., Feng J.-S., Hsiung G.-D.: https://doi.org/10.1021/jm00106a034>
14. Int. J. Pharm. 2000, 194, 15.
< S., Krishnaprasad B. N., Khanna M., Dwivedi A. K., Singh S., Kumar A., Katti S. B.: https://doi.org/10.1016/S0378-5173(99)00263-X>
15. Nucleosides Nucleotides 1994, 13, 1049.
< A., Khan S. I., Manglani A., Khan Z. K., Katti S. B.: https://doi.org/10.1080/15257779408011878>
16. Biochemistry 1985, 24, 5716.
< V., Kramer F. R.: https://doi.org/10.1021/bi00342a005>
17a. J. Med. Chem. 1965, 8, 659.
< E., Holly F. W., Boxer G. E., Nutt R. F., Jenkins S. F.: https://doi.org/10.1021/jm00329a022>
17b. Synthesis 1985, 1108.
< H., Chattopadhyaya J.: https://doi.org/10.1055/s-1985-31441>
17c. Tetrahedron Lett. 1985, 26, 4295.
< F., Robins M. J.: https://doi.org/10.1016/S0040-4039(00)98716-1>
17d. J. Am. Chem. Soc. 1988, 110, 7217.
< D. W., Kramer J. B.: https://doi.org/10.1021/ja00229a048>
17e. J. Am. Chem. Soc. 1992, 114, 6254.
< J. P., Rizzo C. J., Breslow R.: https://doi.org/10.1021/ja00041a058>
17f. J. Org. Chem. 1994, 59, 7243.
< T. L., Rosenblatt A. T., Breslow R.: https://doi.org/10.1021/jo00103a014>
17g. J. Org. Chem. 1995, 60, 7902.
< M. J., Wilson J. S., Madej D., Low N. H., Hansske F., Wnuk S. F.: https://doi.org/10.1021/jo00129a034>
17h. Tetrahedron Lett. 1995, 36, 6991.
< G. X., Bischofberger N.: https://doi.org/10.1016/0040-4039(95)01447-P>
17i. Tetrahedron Lett. 2001, 42, 561.
< Z., Zhang L., Zhang B.: https://doi.org/10.1016/S0040-4039(00)02041-4>
18. ARKIVOC 2006, 101.
< K., Nair V.: https://doi.org/10.3998/ark.5550190.0007.211>
19. Tetrahedron 1997, 53, 7237.
< A. S. B., Stevenson T. M., Citineni J. B., Nyzam V., Knochel P.: https://doi.org/10.1016/S0040-4020(97)00427-4>
20a. Eur. J. Org. Chem. 2003, 245.
< M.: https://doi.org/10.1002/ejoc.200390025>
20b. Chem. Rev. 2003, 103, 1875.
< L. A., Gillaizeau I., Saito Y.: https://doi.org/10.1021/cr010374q>
21a. J. Am. Chem. Soc. 2001, 123, 7779.
< M. K., Hilmer J. H., Martin J. Q., Keeler J. C., Dinh Y. Q. V., Ngassa F. N., Russon L. M.: https://doi.org/10.1021/ja0107172>
21b. Org. Lett. 2002, 4, 1479.
< M. K., Thomson P. F., Nuqui M. A., Hilmer J. H., Sevova N., Boggess B.: https://doi.org/10.1021/ol025673w>
21c. Angew. Chem., Int. Ed. 2004, 43, 6372.
< P., Russon L. M., Lakshman M. K.: https://doi.org/10.1002/anie.200460782>
22a. J. Org. Chem. 1992, 57, 5268.
< K., Kitade Y., Kanbe Y., Maki Y.: https://doi.org/10.1021/jo00045a051>
22b. Collect. Czech. Chem. Commun. 2000, 65, 1357.
< M., Hocek M., Holý A.: https://doi.org/10.1135/cccc20001357>
22c. Collect. Czech. Chem. Commun. 2006, 71, 788.
< P., Pohl R., Votruba I., Klepetářová B., Hocek M.: https://doi.org/10.1135/cccc20060788>
23a. J. Org. Chem. 2005, 70, 8001.
< P., Pohl R., Hocek M.: https://doi.org/10.1021/jo051110x>
23b. J. Org. Chem. 2006, 71, 7322.
< M., Pohl R., Klepetářová B., Hocek M.: https://doi.org/10.1021/jo061080d>
24. Science 1999, 285, 110.
< V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R.: https://doi.org/10.1126/science.285.5424.110>