Collect. Czech. Chem. Commun. 2005, 70, 1315-1340
https://doi.org/10.1135/cccc20051315

Convergence Properties of the Normal Mode Optimization and Its Combination with Molecular Geometry Constraints

Petr Bouř

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1. Fletcher R.: Practical Methods of Optimization. Wiley, New York 1981.
2. Peng C., Ayala P. Y., Schlegel H. B., Frisch M. J.: J. Comput. Chem. 1996, 17, 49. <https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0>
3. Baker J., Hehre W. J.: J. Comput. Chem. 1991, 12, 606. <https://doi.org/10.1002/jcc.540120510>
4. Vreven T., Morokuma K., Farkas Ö., Schlegel H. B., Frisch M. J.: J. Comput. Chem. 2002, 24, 760. <https://doi.org/10.1002/jcc.10156>
5. Reveles J. U., Köster A. M.: J. Comput. Chem. 2004, 25, 1109. <https://doi.org/10.1002/jcc.20034>
6. Sellers H. L., Klimkowski V. J., Schäfer L.: Chem. Phys. Lett. 1978, 58, 541. <https://doi.org/10.1016/0009-2614(78)80014-1>
7. Pulay P., Fogarasi G., Pang F., Boggs J. E.: J. Am. Chem. Soc. 1979, 101, 2550. <https://doi.org/10.1021/ja00504a009>
8. Fogarasi G., Zhou X., Taylor P. W., Pulay P.: J. Am. Chem. Soc. 1992, 114, 8191. <https://doi.org/10.1021/ja00047a032>
9. Ahlrichs R., von Arnim M.: J. Chem. Phys. 1999, 111, 9183. <https://doi.org/10.1063/1.480156>
10. Lindh R., Bernhardsson A., Schutz M.: Chem. Phys. Lett. 1999, 393, 567. <https://doi.org/10.1016/S0009-2614(99)00247-X>
11. Baker J., Kessi A., Delley B.: J. Chem. Phys. 1996, 105, 192. <https://doi.org/10.1063/1.471864>
12. Schlegel H. B.: Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 243. <https://doi.org/10.1002/qua.560440821>
13. Baker J.: J. Comput. Chem. 1993, 14, 1085. <https://doi.org/10.1002/jcc.540140910>
14. Bearpark M. J., Robb M. A., Schlegel H. B.: Chem. Phys. Lett. 1994, 223, 269. <https://doi.org/10.1016/0009-2614(94)00433-1>
15. Anglada J. M., Bofill J. M.: J. Comput. Chem. 1997, 18, 992. <https://doi.org/10.1002/(SICI)1096-987X(199706)18:8<992::AID-JCC3>3.0.CO;2-L>
16. Eckert F., Pulay P., Werner H. J.: J. Comput. Chem. 1997, 18, 1473. <https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G>
17. Bouř P., Keiderling T. A.: J. Chem. Phys. 2002, 117, 4126. <https://doi.org/10.1063/1.1498468>
18. Andrushchenko V., Wieser H., Bouř P.: J. Phys. Chem. B 2004, 108, 3899. <https://doi.org/10.1021/jp037106b>
19. Bouř P., Keiderling T. A.: J. Chem. Phys. 2003, 119, 11253. <https://doi.org/10.1063/1.1622384>
20. Bouř P.: Chem. Phys. Lett. 2002, 365, 82. <https://doi.org/10.1016/S0009-2614(02)01422-7>
21. Ayala P. Y., Schlegel H. B.: J. Chem. Phys. 1997, 107, 375. <https://doi.org/10.1063/1.474398>
22. Banerjee A., Adams N., Simons J., Shepard R.: J. Phys. Chem. 1985, 89, 52. <https://doi.org/10.1021/j100247a015>
23. Nicols J., Taylor H., Schmidt P., Simons J.: J. Chem. Phys. 1990, 92, 340. <https://doi.org/10.1063/1.458435>
24. Fletcher R.: Practical Methods of Optimization: Constrained Optimization, Vol. 2. Wiley, New York 1981.
25. van de Graff B., Baas J. M.: J. Comput. Chem. 1984, 5, 314. <https://doi.org/10.1002/jcc.540050406>
27. Baker J.: J. Comput. Chem. 1992, 13, 240. <https://doi.org/10.1002/jcc.540130215>
28. Onsager L.: J. Am. Chem. Soc. 1936, 58, 1486. <https://doi.org/10.1021/ja01299a050>
29. Tomasi J., Mennucci B., Cancès E.: J. Mol. Struct. (THEOCHEM) 1999, 464, 211. <https://doi.org/10.1016/S0166-1280(98)00553-3>
30. Eckert F., Klamt A.: AIChE J. 2002, 48, 369. <https://doi.org/10.1002/aic.690480220>
31. Foresman J. B., Keith T. A., Wiberg K. B., Snoonian J., Frisch M. J.: J. Phys. Chem. 1996, 100, 16098. <https://doi.org/10.1021/jp960488j>
32. Pliego J. R., Riveros J. M.: J. Phys. Chem. A 2001, 105, 7241. <https://doi.org/10.1021/jp004192w>
33. Mennucci B., Tomas J., Cammi R., Cheeseman J. R., Frisch M. J., Devlin F. J., Gabriel S., Stephens P. J.: J. Phys. Chem. A 2002, 106, 6102. <https://doi.org/10.1021/jp020124t>
34. Corni S., Cappelli C., Cammi R., Tomasi J.: J. Phys. Chem. A 2001, 105, 8310. <https://doi.org/10.1021/jp011079c>
35. Ham S., Kim J. H., Lee H., Cho M.: J. Chem. Phys. 2003, 118, 3491. <https://doi.org/10.1063/1.1536980>
36. Cho M.: J. Chem. Phys. 2003, 118, 3480. <https://doi.org/10.1063/1.1536979>
37. Bouř P.: J. Chem. Phys. 2004, 121, 7545. <https://doi.org/10.1063/1.1810138>
38. Bouř P., Michalík D., Kapitán J.: J. Chem. Phys. 2005, 122, 144501. <https://doi.org/10.1063/1.1877272>
39. Papoušek D., Aliev M. R.: Molecular Vibrational/Rotational Spectra. Academia, Prague 1982.
40a. Broyden C. G.: J. Inst. Math. Appl. 1970, 6, 76. <https://doi.org/10.1093/imamat/6.1.76>
40b. Fletcher R.: Comput. J. 1970, 13, 317. <https://doi.org/10.1093/comjnl/13.3.317>
40c. Goldfarb D.: Math. Comput. 1970, 24, 23. <https://doi.org/10.1090/S0025-5718-1970-0258249-6>
40d. Shanno D. F.: Math. Comput. 1970, 24, 647. <https://doi.org/10.1090/S0025-5718-1970-0274029-X>
41. Wilson E. B., Decius J. C., Cross P. C.: Molecular Vibrations. McGraw–Hill, New York 1955.
42. Klyne W., Prelog V.: Experientia 1960, 521. <https://doi.org/10.1007/BF02158433>
43. Bouř P., Tam C. N., Shaharuzzaman M., Chickos J. S., Keiderling T. A.: J. Phys. Chem. 1996, 100, 15041. <https://doi.org/10.1021/jp961217b>
44. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven J. T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzales C., Pople J. A.: Gaussian 03, Rev. B02. Gaussian, Inc., Pittsburgh (PA) 2003.
45. Shamovsky I. L., Ross G. M., Riopelle R. J.: J. Phys. Chem. B 2000, 104, 11296. <https://doi.org/10.1021/jp002590t>
46. Kubelka J., Keiderling T. A.: J. Am. Chem. Soc. 2001, 123, 12048. <https://doi.org/10.1021/ja0116627>
47. Bouř P., Keiderling T. A.: J. Mol. Struct. (THEOCHEM) 2004, 675, 95. <https://doi.org/10.1016/j.theochem.2003.12.046>
48. Creighton T. E.: Proteins: Structures and Molecular Properties. Freeman and Co., New York 1993.
49. Bouř P., Kubelka J., Keiderling T. A.: Biopolymers 2002, 65, 45. <https://doi.org/10.1002/bip.10224>
50. Bouř P., Sopková J., Bednárová L., Maloň P., Keiderling T. A.: J. Comput. Chem. 1997, 18, 646. <https://doi.org/10.1002/(SICI)1096-987X(19970415)18:5<646::AID-JCC6>3.0.CO;2-N>
51. Andrushchenko V., Wieser H., Bouř P.: J. Phys. Chem. B 2004, 108, 3899. <https://doi.org/10.1021/jp037106b>
52. Andrushchenko V., Wieser H., Bouř P.: J. Phys. Chem. B 2002, 106, 12623. <https://doi.org/10.1021/jp0262721>
53. Aravinda S., Shamala N., Rajkishore R., Gopi H. N., Balaram P.: Angew. Chem., Int. Ed. 2000, 41, 3863. <https://doi.org/10.1002/1521-3773(20021018)41:20<3863::AID-ANIE3863>3.0.CO;2-A>
54. Cochran A. G., Skelton N. J., Starovasnik M. A.: Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5578. <https://doi.org/10.1073/pnas.091100898>