Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2005, 70, 1109-1132
https://doi.org/10.1135/cccc20051109

Time-Independent Coupled-Cluster Theory of the Polarization Propagator

Robert Moszynski, Piotr S. Żuchowski and Bogumił Jeziorski*

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Crossref Cited-by Linking

  • Shirkov Leonid, Sladek Vladimir: Ab initio relativistic potential energy surface with analytical long-range part of benzene-Rn complex and its application to intermolecular vibrations. Chemical Physics 2023, 565, 111756. <https://doi.org/10.1016/j.chemphys.2022.111756>
  • Żuchowski Piotr S., Moszynski Robert: Dispersion Energy from the Time-Independent Coupled-Cluster Polarization Propagator. J. Chem. Theory Comput. 2023, 19, 1177. <https://doi.org/10.1021/acs.jctc.2c00902>
  • Shirkov Leonid: Character of intermolecular vibrations in the benzene–neon complex based on CCSD(T) and SAPT potential energy surfaces. Phys. Chem. Chem. Phys. 2023, 25, 419. <https://doi.org/10.1039/D2CP04369F>
  • Shirkov Leonid, Tomza Michał: Long-range interactions of aromatic molecules with alkali-metal and alkaline-earth-metal atoms. The Journal of Chemical Physics 2023, 158. <https://doi.org/10.1063/5.0135929>
  • Tucholska A. M., Lesiuk M., Moszynski R.: Spin–orbit coupling matrix elements from the explicitly connected expressions of the response functions within the coupled-cluster theory. Molecular Physics 2022, 120. <https://doi.org/10.1080/00268976.2022.2029965>
  • Leung K H, Tiberi E, Iritani B, Majewska I, Moszynski R, Zelevinsky T: Ultracold 88Sr2 molecules in the absolute ground state. New J. Phys. 2021, 23, 115002. <https://doi.org/10.1088/1367-2630/ac2dac>
  • Patkowski Konrad: Recent developments in symmetry‐adapted perturbation theory. WIREs Comput Mol Sci 2020, 10. <https://doi.org/10.1002/wcms.1452>
  • Hodecker Manuel, Rehn Dirk R., Dreuw Andreas: Hermitian second-order methods for excited electronic states: Unitary coupled cluster in comparison with algebraic–diagrammatic construction schemes. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/1.5142354>
  • Werner Hans-Joachim, Knowles Peter J., Manby Frederick R., Black Joshua A., Doll Klaus, Heßelmann Andreas, Kats Daniel, Köhn Andreas, Korona Tatiana, Kreplin David A., Ma Qianli, Miller Thomas F., Mitrushchenkov Alexander, Peterson Kirk A., Polyak Iakov, Rauhut Guntram, Sibaev Marat: The Molpro quantum chemistry package. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/5.0005081>
  • Hapka Michał, Przybytek Michał, Pernal Katarzyna: Second-Order Dispersion Energy Based on Multireference Description of Monomers. J. Chem. Theory Comput. 2019, 15, 1016. <https://doi.org/10.1021/acs.jctc.8b01058>
  • Chatterjee Koushik, Sokolov Alexander Yu.: Second-Order Multireference Algebraic Diagrammatic Construction Theory for Photoelectron Spectra of Strongly Correlated Systems. J. Chem. Theory Comput. 2019, 15, 5908. <https://doi.org/10.1021/acs.jctc.9b00528>
  • Hapka Michał, Przybytek Michał, Pernal Katarzyna: Second-Order Exchange-Dispersion Energy Based on a Multireference Description of Monomers. J. Chem. Theory Comput. 2019, 15, 6712. <https://doi.org/10.1021/acs.jctc.9b00925>
  • Wójcik Paweł, Korona Tatiana, Tomza Michał: Interactions of benzene, naphthalene, and azulene with alkali-metal and alkaline-earth-metal atoms for ultracold studies. The Journal of Chemical Physics 2019, 150. <https://doi.org/10.1063/1.5094907>
  • Visentin Giorgio, Buchachenko Alexei A.: Polarizabilities, dispersion coefficients, and retardation functions at the complete basis set CCSD limit: From Be to Ba plus Yb. The Journal of Chemical Physics 2019, 151. <https://doi.org/10.1063/1.5129583>
  • Copan Andreas V., Sokolov Alexander Yu.: Linear-Response Density Cumulant Theory for Excited Electronic States. J. Chem. Theory Comput. 2018, 14, 4097. <https://doi.org/10.1021/acs.jctc.8b00326>
  • Sokolov Alexander Yu.: Multi-reference algebraic diagrammatic construction theory for excited states: General formulation and first-order implementation. The Journal of Chemical Physics 2018, 149. <https://doi.org/10.1063/1.5055380>
  • Thibault Franck, Patkowski Konrad, Żuchowski Piotr S., Jóźwiak Hubert, Ciuryło Roman, Wcisło Piotr: Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 202, 308. <https://doi.org/10.1016/j.jqsrt.2017.08.014>
  • Tomza Michał: Cold interactions and chemical reactions of linear polyatomic anions with alkali-metal and alkaline-earth-metal atoms. Phys. Chem. Chem. Phys. 2017, 19, 16512. <https://doi.org/10.1039/C7CP02127E>
  • Tucholska Aleksandra M., Lesiuk Michał, Moszynski Robert: Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function. The Journal of Chemical Physics 2017, 146. <https://doi.org/10.1063/1.4973978>
  • Shirkov Leonid, Sladek Vladimir: Benchmark CCSD-SAPT study of rare gas dimers with comparison to MP-SAPT and DFT-SAPT. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.4997569>
  • Urbańczyk T., Strojecki M., Krośnicki M., Kędziorski A., Żuchowski P. S., Koperski J.: Interatomic potentials of metal dimers: probing agreement between experiment and advanced ab initio calculations for van der Waals dimer Cd2. International Reviews in Physical Chemistry 2017, 36, 541. <https://doi.org/10.1080/0144235X.2017.1337371>
  • Balcerzak Justyna G., Lesiuk Michał, Moszynski Robert: Calculation of Araki-Sucher correction for many-electron systems. Phys. Rev. A 2017, 96. <https://doi.org/10.1103/PhysRevA.96.052510>
  • Borkowski Mateusz, Muñoz Rodriguez Rodolfo, Kosicki Maciej B., Ciuryło Roman, Żuchowski Piotr S.: Optical Feshbach resonances and ground-state-molecule production in the RbHg system. Phys. Rev. A 2017, 96. <https://doi.org/10.1103/PhysRevA.96.063411>
  • Midya Bikashkali, Tomza Michał, Schmidt Richard, Lemeshko Mikhail: Rotation of cold molecular ions inside a Bose-Einstein condensate. Phys. Rev. A 2016, 94. <https://doi.org/10.1103/PhysRevA.94.041601>
  • Tomza Michał, Koch Christiane P., Moszynski Robert: Cold interactions between an Yb+ ion and a Li atom: Prospects for sympathetic cooling, radiative association, and Feshbach resonances. Phys. Rev. A 2015, 91. <https://doi.org/10.1103/PhysRevA.91.042706>
  • Lanza Mathieu, Kalugina Yulia, Wiesenfeld Laurent, Lique François: Near-resonant rotational energy transfer in HCl–H2 inelastic collisions. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4864359>
  • Tucholska Aleksandra M., Modrzejewski Marcin, Moszynski Robert: Transition properties from the Hermitian formulation of the coupled cluster polarization propagator. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4896056>
  • Hapka Michał, Rajchel Łukasz, Modrzejewski Marcin, Chałasiński Grzegorz, Szczęśniak Małgorzata M.: Tuned range-separated hybrid functionals in the symmetry-adapted perturbation theory. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4896608>
  • Tomza Michał: Ab initio properties of the ground-state polar and paramagnetic europium–alkali-metal-atom and europium–alkaline-earth-metal-atom molecules. Phys. Rev. A 2014, 90. <https://doi.org/10.1103/PhysRevA.90.022514>
  • Buryak I.A., Kalugina Y.N., Vigasin A.A.: Ab initio and multipolar characterisation of the induced dipole surface for CH4–CH4: Application to dipole-forbidden absorption in the Titan’s atmosphere. Journal of Molecular Spectroscopy 2013, 291, 102. <https://doi.org/10.1016/j.jms.2013.05.008>
  • Denis-Alpizar Otoniel, Kalugina Yulia, Stoecklin Thierry, Vera Mario Hernández, Lique François: A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4833676>
  • Korona Tatiana: A coupled cluster treatment of intramonomer electron correlation within symmetry-adapted perturbation theory: benchmark calculations and a comparison with a density-functional theory description. Molecular Physics 2013, 111, 3705. <https://doi.org/10.1080/00268976.2012.746478>
  • Żuchowski P. S., Kosicki M., Kodrycka M., Soldán P.: van der Waals coefficients for systems with ultracold polar alkali-metal molecules. Phys. Rev. A 2013, 87. <https://doi.org/10.1103/PhysRevA.87.022706>
  • Tomza Michał: Prospects for ultracold polar and magnetic chromium–closed-shell-atom molecules. Phys. Rev. A 2013, 88. <https://doi.org/10.1103/PhysRevA.88.012519>
  • Borkowski Mateusz, Żuchowski Piotr S., Ciuryło Roman, Julienne Paul S., Kędziera Dariusz, Mentel Łukasz, Tecmer Paweł, Münchow Frank, Bruni Cristian, Görlitz Axel: Scattering lengths in isotopologues of the RbYb system. Phys. Rev. A 2013, 88. <https://doi.org/10.1103/PhysRevA.88.052708>
  • Helgaker Trygve, Coriani Sonia, Jørgensen Poul, Kristensen Kasper, Olsen Jeppe, Ruud Kenneth: Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem. Rev. 2012, 112, 543. <https://doi.org/10.1021/cr2002239>
  • Loreau Jérôme, Zhang Peng, Dalgarno Alexander: Scattering of nitrogen molecules by silver atoms. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3703518>
  • Skomorowski Wojciech, Pawłowski Filip, Koch Christiane P., Moszynski Robert: Rovibrational dynamics of the strontium molecule in the ${\rm A}\sideset{^1}{_{u}^{+}}{\Sigma}$AΣu+1, c3Πu, and ${\rm a}\sideset{^3}{_{u}^{+}}{\Sigma}$aΣu+3 manifold from state-of-the-art ab initio calculations. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.4713939>
  • Wälz Gero, Kats Daniel, Usvyat Denis, Korona Tatiana, Schütz Martin: Application of Hermitian time-dependent coupled-cluster response Ansätze of second order to excitation energies and frequency-dependent dipole polarizabilities. Phys. Rev. A 2012, 86. <https://doi.org/10.1103/PhysRevA.86.052519>
  • Seleznev A. O., Khrustov V. F.: Propagator estimates of the transition characteristics for the 23 electronic states of the CH+ ion in a wide range of internuclear distances. Russ. J. Phys. Chem. B 2012, 6, 681. <https://doi.org/10.1134/S1990793112060188>
  • Korona Tatiana: The effect of local approximations on first-order properties from expectation-value coupled cluster theory. Theor Chem Acc 2011, 129, 15. <https://doi.org/10.1007/s00214-010-0872-x>
  • Tomza Michał, Pawłowski Filip, Jeziorska Małgorzata, Koch Christiane P., Moszynski Robert: Formation of ultracold SrYb molecules in an optical lattice by photoassociation spectroscopy: theoretical prospects. PCCP 2011, 13, 18893. <https://doi.org/10.1039/c1cp21196j>
  • Skomorowski Wojciech, Pawłowski Filip, Korona Tatiana, Moszynski Robert, Żuchowski Piotr S., Hutson Jeremy M.: Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3563613>
  • Loreau Jérôme, Zhang Peng, Dalgarno Alexander: Elastic scattering and rotational excitation of nitrogen molecules by sodium atoms. The Journal of Chemical Physics 2011, 135. <https://doi.org/10.1063/1.3653983>
  • Krych Michał, Skomorowski Wojciech, Pawłowski Filip, Moszynski Robert, Idziaszek Zbigniew: Sympathetic cooling of the Ba + ion by collisions with ultracold Rb atoms: Theoretical prospects. Phys. Rev. A 2011, 83. <https://doi.org/10.1103/PhysRevA.83.032723>
  • Kats Daniel, Usvyat Denis, Schütz Martin: Second-order variational coupled-cluster linear-response method: A Hermitian time-dependent theory. Phys. Rev. A 2011, 83. <https://doi.org/10.1103/PhysRevA.83.062503>
  • Korona Tatiana: XCC2—a new coupled cluster model for the second-order polarization propagator. Phys. Chem. Chem. Phys. 2010, 12, 14977. <https://doi.org/10.1039/c0cp00474j>
  • Korona Tatiana: Coupled cluster singles and doubles polarisation propagator accurate through the third order of Møller–Plesset theory. Molec Phys 2010, 108, 343. <https://doi.org/10.1080/00268970903476654>
  • Korona Tatiana: Exchange-Dispersion Energy: A Formulation in Terms of Monomer Properties and Coupled Cluster Treatment of Intramonomer Correlation. J. Chem. Theory Comput. 2009, 5, 2663. <https://doi.org/10.1021/ct900232j>
  • Korona Tatiana: Two-particle density matrix cumulant of coupled cluster theory. Phys. Chem. Chem. Phys. 2008, 10, 5698. <https://doi.org/10.1039/b804513e>
  • Korona Tatiana: Second-order exchange-induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants. Phys. Chem. Chem. Phys. 2008, 10, 6509. <https://doi.org/10.1039/b807329e>
  • Korona Tatiana, Jeziorski Bogumil: Dispersion energy from density-fitted density susceptibilities of singles and doubles coupled cluster theory. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2889006>
  • Korona Tatiana: First-order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2933312>
  • Żuchowski Piotr S., Hutson Jeremy M.: Prospects for producing ultracold NH3 molecules by sympathetic cooling: A survey of interaction potentials. Phys. Rev. A 2008, 78. <https://doi.org/10.1103/PhysRevA.78.022701>
  • Patkowski Konrad, Podeszwa Rafał, Szalewicz Krzysztof: Interactions in Diatomic Dimers Involving Closed-Shell Metals. J. Phys. Chem. A 2007, 111, 12822. <https://doi.org/10.1021/jp076412c>
  • Bartlett Rodney J., Musiał Monika: Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291. <https://doi.org/10.1103/RevModPhys.79.291>
  • Korona Tatiana, Jeziorski Bogumil: One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. The Journal of Chemical Physics 2006, 125. <https://doi.org/10.1063/1.2364489>
  • Korona Tatiana, Przybytek Michał, Jeziorski Bogumil: Time-independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and van der Waals constants†. Mole Phys 2006, 104, 2303. <https://doi.org/10.1080/00268970600673975>