Collect. Czech. Chem. Commun.
2005, 70, 1082-1108
https://doi.org/10.1135/cccc20051082
A Case Study of State-Specific and State-Averaged Brueckner Equation-of-Motion Coupled-Cluster Theory: The Ionic-Covalent Avoided Crossing in Lithium Fluoride
Marcel Nooijen* and K. R. Shamasundar
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
References
1. Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
H. J.:
2. Chem. Phys. 1979, 39, 325.
< D., Mukherjee P. K.: https://doi.org/10.1016/0301-0104(79)80153-6>
3. Theor. Chim. Acta 1991, 80, 441.
< D., Mukhopadhyay S., Chauduri R., Mukherjee D.: https://doi.org/10.1007/BF01119665>
4. J. Chem. Phys. 1990, 93, 3345.
< H., Jensen H. J., Jorgensen P., Helgaker T.: https://doi.org/10.1063/1.458815>
5. J. Chem. Phys. 1996, 105, 6921.
< O., Koch H., Halkier A., Jorgensen P., Helgaker T., deMeras A. S.: https://doi.org/10.1063/1.471985>
6. J. Chem. Phys. 1997, 106, 1808.
< H., Christiansen O., Jorgensen P., deMeras A. M. S., Helgaker T.: https://doi.org/10.1063/1.473322>
7. J. Chem. Phys. 1993, 98, 7029.
< J. F., Bartlett R. J.: https://doi.org/10.1063/1.464746>
8. Rev. Comp. Chem. 1994, 5, 65.
< R. J., Stanton J. F.: https://doi.org/10.1002/9780470125823.ch2>
9. J. Chem. Phys. 1999, 111, 8275.
< J. C., Stanton J. F.: https://doi.org/10.1063/1.480171>
10. Astrophys. J. 2000, 544, 838.
< J. A., McMahon R. J., Sattelmeyer K. W., Stanton J. F.: https://doi.org/10.1086/317251>
11. Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 55.
< M., Snijders J. G.: https://doi.org/10.1002/qua.560440808>
12. Int. J. Quantum Chem. 1993, 48, 15.
< M., Snijders J. G.: https://doi.org/10.1002/qua.560480103>
13. J. Chem. Phys. 1995, 102, 3629.
< M., Bartlett R. J.: https://doi.org/10.1063/1.468592>
14. Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
I.:
15. Phys. Rep. 1987, 151, 93.
< I., Mukherjee D.: https://doi.org/10.1016/0370-1573(87)90073-1>
16. Adv. Quantum Chem. 1989, 20, 291.
< D., Pal S.: https://doi.org/10.1016/S0065-3276(08)60629-2>
17. Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 20, 409.
< D.: https://doi.org/10.1002/qua.560300737>
18. Chem. Phys. Lett. 1986, 125, 207.
< D.: https://doi.org/10.1016/0009-2614(86)87050-6>
19. Phys. Rev. A 1985, 32, 725.
< L., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.32.725>
20. Theor. Chim. Acta 1991, 80, 427.
< U.: https://doi.org/10.1007/BF01119664>
21. J. Chem. Phys. 1993, 99, 6773.
< S. R., Kaldor U.: https://doi.org/10.1063/1.465820>
22. Chem. Phys. Lett. 1996, 255, 244.
< L.: https://doi.org/10.1016/0009-2614(96)00400-9>
23. Phys. Rev. A 2000, 61, 062510.
< L., Malinowski P.: https://doi.org/10.1103/PhysRevA.61.062510>
24. Collect. Czech. Chem. Commun. 2003, 68, 105.
< L. Gryniakow J.: https://doi.org/10.1135/cccc20030105>
25. J. Chem. Phys. 1998, 108, 9227.
< L.: https://doi.org/10.1063/1.476377>
26. Chem. Phys. Lett. 1999, 313, 399.
< A., Eliav E., Kaldor U.: https://doi.org/10.1016/S0009-2614(99)01067-2>
27. J. Chem. Phys. 2000, 113, 9905.
< A., Eliav E., Ishikawa Y., Kaldor U.: https://doi.org/10.1063/1.1323258>
28. Int. J. Mod. Phys. B 2003, 17, 5335.
< A., Eliav E., Kaldor U.: https://doi.org/10.1142/S0217979203020466>
29. J. Chem. Phys. 2004, 121, 6634.
< A., Eliav E., Ishikawa Y., Kaldor U.: https://doi.org/10.1063/1.1788652>
30. J. Chem. Phys. 1996, 104, 2638.
< M.: https://doi.org/10.1063/1.470988>
31. J. Chem. Phys. 1997, 106, 6441.
< M., Bartlett R. J.: https://doi.org/10.1063/1.474000>
32. J. Chem. Phys. 1997, 106, 6449.
< M., Bartlett R. J.: https://doi.org/10.1063/1.473635>
33. J. Chem. Phys. 1997, 107, 6812.
< M., Bartlett R. J.: https://doi.org/10.1063/1.474922>
34. Spectrochim. Acta, Part A 1999, 55, 539.
< M.: https://doi.org/10.1016/S1386-1425(98)00261-3>
35. J. Chem. Phys. 2000, 113, 494.
< M., Lotrich V.: https://doi.org/10.1063/1.481828>
36. J. Phys. Chem. A 2000, 104, 4553.
< M.: https://doi.org/10.1021/jp993983z>
37. Theor. Chim. Acta 1995, 91, 267.
J. F., Gauss J.:
38. J. Chem. Phys. 1994, 101, 8938.
< J. F., Gauss J.: https://doi.org/10.1063/1.468022>
39. J. Chem. Phys. 1994, 100, 4695.
< J. F., Gauss J.: https://doi.org/10.1063/1.466253>
40. J. Chem. Phys. 1999, 111, 58.
< S. R., Bartlett R. J., Nooijen M.: https://doi.org/10.1063/1.479361>
41. Wladyslawski M., Nooijen M. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 65. ACS, Washington 2002.
42. Wladyslawski M., Nooijen M.: Adv. Quantum Chem. 2005, in press.
43. J. Chem. Phys. 1999, 111, 525.
< O., Gauss J., Stanton J. F., Jorgensen P.: https://doi.org/10.1063/1.479332>
44. J. Chem. Phys. 2003, 119, 10713.
< M., Perera S. A., Musial M., Bartlett R. J., Nooijen M., Lee J. S.: https://doi.org/10.1063/1.1619952>
45. Int. J. Quantum Chem. 2003, 95, 643.
< A., Nooijen M.: https://doi.org/10.1002/qua.10723>
46. J. Chem. Phys. 2004, 121, 2125.
< A., Chang H. H., Nooijen M.: https://doi.org/10.1063/1.1768173>
47. Phys. Chem. Chem. Phys. 2005, 7, 1759.
< A., Nooijen M.: https://doi.org/10.1039/b500055f>
48. J. Chem. Phys. 2001, 115, 1.
< J. F., Sattelmeyer K. W., Gauss J., Allan M., Skalicky T., Bally T.: https://doi.org/10.1063/1.1381575>
49. J. Chem. Phys. 2004, 121, 5236.
< Y. J., Sattelmeyer K. W., Stanton J. F., Gauss J.: https://doi.org/10.1063/1.1780159>
50. Int. J. Quantum Chem. 2003, 95, 768.
< M.: https://doi.org/10.1002/qua.10724>
51. Hazra A., Nooijen M.: J. Chem. Phys. 2005, accepted.
52. Chem. Phys. Lett. 2001, 350, 522.
< A. I.: https://doi.org/10.1016/S0009-2614(01)01316-1>
53. Chem. Phys. Lett. 2001, 338, 375.
< A. I.: https://doi.org/10.1016/S0009-2614(01)00287-1>
54. J. Chem. Phys. 2002, 116, 3194.
< A. I., Sherrill C. D.: https://doi.org/10.1063/1.1445116>
55. J. Chem. Phys. 2003, 118, 9614.
< L. V., Krylov A. I.: https://doi.org/10.1063/1.1569845>
56. J. Chem. Phys. 2004, 120, 175.
< S. V., Krylov A. I.: https://doi.org/10.1063/1.1630018>
57. J. Phys. Chem. A 2004, 108, 6581.
< A. M. C., Shao Y., Krylov A. I.: https://doi.org/10.1021/jp049007j>
58. J. Chem. Phys. 2000, 113, 5644.
< K., Piecuch P.: https://doi.org/10.1063/1.1290609>
59. J. Chem. Phys. 2000, 113, 18.
< K., Piecuch P.: https://doi.org/10.1063/1.481769>
60. Int. Rev. Phys. Chem. 2002, 21, 527.
< P., Kowalski K., Pimienta I. S. O., McGuire M. J.: https://doi.org/10.1080/0144235021000053811>
61. J. Chem. Phys. 1998, 110, 6171.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1063/1.478523>
62. Adv. Quantum Chem. 1998, 30, 163.
< U. S., Datta B., Bandyopadhyay B., Mukherjee D.: https://doi.org/10.1016/S0065-3276(08)60507-9>
63. Mol. Phys. 1998, 94, 157.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1080/00268979809482304>
64. J. Phys. Chem. A 1999, 103, 1822.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1021/jp9832995>
65. J. Chem. Phys. 1999, 110, 6171.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1063/1.478523>
66. Chattopadhyay S., Mahapatra U. S., Ghosh P., Mukherjee D. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 109. ACS, Washington 2002.
67. Chem. Phys. Lett. 2002, 357, 426.
< S., Mahapatra U. S., Datta B., Mukherjee D.: https://doi.org/10.1016/S0009-2614(02)00534-1>
68. J. Chem. Phys. 2004, 120, 5968.
< S., Pahari D., Mukherjee D., Mahapatra U. S.: https://doi.org/10.1063/1.1650328>
69. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Čársky P.: https://doi.org/10.1063/1.481493>
70. J. Phys. Chem. A 2001, 105, 1354.
< J., Nachtigall P., Čársky P., Hubač I.: https://doi.org/10.1021/jp0032199>
71. J. Mol. Struct. (THEOCHEM) 2001, 547, 239.
< J., Šmydke J., Čársky P., Hubač I.: https://doi.org/10.1016/S0166-1280(01)00473-0>
72. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
73. J. Chem. Phys. 1994, 101, 8812.
< X. Z., Paldus J.: https://doi.org/10.1063/1.468074>
74. J. Chem. Phys. 1995, 102, 8059.
< X. Z., Paldus J.: https://doi.org/10.1063/1.469005>
75. Int. J. Quantum Chem. 1998, 70, 65.
< X. Z., Paldus J.: https://doi.org/10.1002/(SICI)1097-461X(1998)70:1<65::AID-QUA4>3.0.CO;2-3>
76. Phys. Rev. A 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
77. J. Chem. Phys. 1991, 94, 1229.
< N., Adamowicz L.: https://doi.org/10.1063/1.460031>
78. Int. Rev. Phys. Chem. 1993, 12, 339.
< N., Adamowicz L.: https://doi.org/10.1080/01442359309353285>
79. J. Chem. Phys. 1993, 99, 1875.
< P., Oliphant N., Adamowicz L.: https://doi.org/10.1063/1.466179>
80. J. Chem. Phys. 2000, 112, 10075.
< L., Malrieu J. P., Ivanov V. V.: https://doi.org/10.1063/1.481649>
81. J. Chem. Phys. 2005, 122, 024108.
< D. I., Ivanov V. V., Adamowicz L.: https://doi.org/10.1063/1.1824897>
82. J. Chem. Phys. 1999, 110, 6103.
< P., Kucharski S. A., Bartlett R. J.: https://doi.org/10.1063/1.478517>
83. Chem. Phys. Lett. 2001, 344, 165.
< K., Piecuch P.: https://doi.org/10.1016/S0009-2614(01)00730-8>
84. J. Chem. Phys. 1997, 107, 6257.
< X. Z., Paldus J.: https://doi.org/10.1063/1.474289>
85. J. Chem. Phys. 1998, 108, 637.
< X. Z., Paldus J.: https://doi.org/10.1063/1.475425>
86. J. Chem. Phys. 1999, 110, 2844.
< X. Z., Paldus J.: https://doi.org/10.1063/1.477926>
87. J. Chem. Phys. 2000, 113, 9966.
< X. Z., Paldus J.: https://doi.org/10.1063/1.1323260>
88. Mol. Phys. 2000, 98, 1185.
< X. Z., Paldus J.: https://doi.org/10.1080/00268970050080546>
89. Chem. Phys. Lett. 1999, 300, 53.
< L., Grabowski I.: https://doi.org/10.1016/S0009-2614(98)01332-3>
90. Chem. Phys. Lett. 2000, 316, 501.
< L., Nooijen M.: https://doi.org/10.1016/S0009-2614(99)01209-9>
91. J. Phys. Chem. 1992, 96, 9204.
< M. P., Andersson K., Roos B. O.: https://doi.org/10.1021/j100202a026>
92. J. Chem. Phys. 1992, 96, 1218.
< K., Malmqvist P. A., Roos B. O.: https://doi.org/10.1063/1.462209>
93. Adv. Chem. Phys. 1996, 93, 219.
< B. O., Andersson K., Fulscher M. P., Malmqvist P. A., Serrano-Andres L., Pierloot K., Merchan M.: https://doi.org/10.1002/9780470141526.ch5>
94. J. Comput. Chem. 2002, 23, 1166.
< H., Uchiyama R., Hirao K.: https://doi.org/10.1002/jcc.10050>
95. Theor. Chem. Acc. 1999, 102, 49.
< Y., Hashimoto T., Nakano H., Hirao K.: https://doi.org/10.1007/s002140050472>
96. Chem. Phys. Lett. 1998, 295, 380.
< Y. K., Hashimoto T., Nakano H., Hirao K.: https://doi.org/10.1016/S0009-2614(98)00986-5>
97. J. Chem. Phys. 1996, 104, 2652.
< M., Bartlett R. J.: https://doi.org/10.1063/1.471010>
98. J. Mol. Struct. (THEOCHEM) 2001, 547, 253.
< M., Lotrich V.: https://doi.org/10.1016/S0166-1280(01)00475-4>
99. Int. J. Mol. Sci. 2002, 3, 656.
< M.: https://doi.org/10.3390/i3060656>
100. J. Chem. Phys. 1981, 74, 4544.
< R. A., Dykstra C. E.: https://doi.org/10.1063/1.441643>
101. Chem. Phys. Lett. 1989, 164, 185.
< N. C., Pople J. A., Headgordon M., Raghavachari K., Trucks G. W.: https://doi.org/10.1016/0009-2614(89)85013-4>
102. Int. J. Quantum Chem. 1994, 49, 835.
< H., Kobayashi R., Jorgensen P.: https://doi.org/10.1002/qua.560490607>
103. J. Chem. Phys. 2000, 113, 4549.
< M., Lotrich V.: https://doi.org/10.1063/1.1288912>
104. J. Phys. B 1984, 17, 1235.
< F., Malrieu J. P.: https://doi.org/10.1088/0022-3700/17/7/012>
105. J. Phys. B 1984, 17, 1259.
< F., Malrieu J. P.: https://doi.org/10.1088/0022-3700/17/7/013>
106. Chem. Phys. Lett. 1998, 288, 299.
< J., Malmqvist P. A., Roos B. O., Serrano-Andres L.: https://doi.org/10.1016/S0009-2614(98)00252-8>
107. J. Chem. Phys. 2000, 112, 3958.
< J. P., Witek H. A.: https://doi.org/10.1063/1.480947>
108. J. Chem. Phys. 2001, 114, 1133.
< H., Nakatani J., Hirao K.: https://doi.org/10.1063/1.1332992>
109. J. Chem. Phys. 2000, 113, 9940.
< C., Dominguez-Ariza D., deGraaf C., Illas F.: https://doi.org/10.1063/1.1323264>
110. Mol. Phys. 2003, 101, 2019.
< O., Roder J., Hess B. A.: https://doi.org/10.1080/0026897031000155625>
111. J. Chem. Phys. 1980, 72, 650.
< R., Binkley J. S., Seeger R., Pople J. A.: https://doi.org/10.1063/1.438955>
112. Chem. Phys. Lett. 2003, 378, 42.
< K. W., Schaefer H. F., Stanton J. F.: https://doi.org/10.1016/S0009-2614(03)01181-3>
113. J. Mol. Struct. (THEOCHEM) 1984, 114, 31.
< P., Pulay P.: https://doi.org/10.1016/S0022-2860(84)87198-7>
114. Proc. Natl. Acad. Sci. U.S.A., Phys. Sci. 1980, 77, 4403.
< J., Davidson E. R.: https://doi.org/10.1073/pnas.77.8.4403>
115. Chem. Phys. Lett. 1988, 153, 69.
< B. T., Snijders J. G.: https://doi.org/10.1016/0009-2614(88)80134-9>
116. Int. J. Quantum Chem. 1987, 31, 871.
< J. M. O., Day O. W.: https://doi.org/10.1002/qua.560310604>
117. J. Chem. Phys. 1992, 96, 3718.
< R. C.: https://doi.org/10.1063/1.461875>
118. Int. J. Quantum Chem. 1994, 49, 649.
< R. C.: https://doi.org/10.1002/qua.560490510>
119. J. Chem. Phys. 1993, 98, 3999.
< D., Olsen J.: https://doi.org/10.1063/1.464028>
120. Chem. Phys. Lett. 1998, 288, 282.
< J., Sundholm D.: https://doi.org/10.1016/S0009-2614(98)00302-9>
121. Chem. Phys. 1999, 111, 8356.
M. J.:
122. J. Chem. Phys. 1995, 103, 281.
< P. G., Nooijen M., Bartlett R. J.: https://doi.org/10.1063/1.469641>