Collect. Czech. Chem. Commun. 2005, 70, 1082-1108
https://doi.org/10.1135/cccc20051082

A Case Study of State-Specific and State-Averaged Brueckner Equation-of-Motion Coupled-Cluster Theory: The Ionic-Covalent Avoided Crossing in Lithium Fluoride

Marcel Nooijen* and K. R. Shamasundar

Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

References

1. Monkhorst H. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
2. Mukherjee D., Mukherjee P. K.: Chem. Phys. 1979, 39, 325. <https://doi.org/10.1016/0301-0104(79)80153-6>
3. Mukhopadhyay D., Mukhopadhyay S., Chauduri R., Mukherjee D.: Theor. Chim. Acta 1991, 80, 441. <https://doi.org/10.1007/BF01119665>
4. Koch H., Jensen H. J., Jorgensen P., Helgaker T.: J. Chem. Phys. 1990, 93, 3345. <https://doi.org/10.1063/1.458815>
5. Christiansen O., Koch H., Halkier A., Jorgensen P., Helgaker T., deMeras A. S.: J. Chem. Phys. 1996, 105, 6921. <https://doi.org/10.1063/1.471985>
6. Koch H., Christiansen O., Jorgensen P., deMeras A. M. S., Helgaker T.: J. Chem. Phys. 1997, 106, 1808. <https://doi.org/10.1063/1.473322>
7. Stanton J. F., Bartlett R. J.: J. Chem. Phys. 1993, 98, 7029. <https://doi.org/10.1063/1.464746>
8. Bartlett R. J., Stanton J. F.: Rev. Comp. Chem. 1994, 5, 65. <https://doi.org/10.1002/9780470125823.ch2>
9. Saeh J. C., Stanton J. F.: J. Chem. Phys. 1999, 111, 8275. <https://doi.org/10.1063/1.480171>
10. Hodges J. A., McMahon R. J., Sattelmeyer K. W., Stanton J. F.: Astrophys. J. 2000, 544, 838. <https://doi.org/10.1086/317251>
11. Nooijen M., Snijders J. G.: Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 55. <https://doi.org/10.1002/qua.560440808>
12. Nooijen M., Snijders J. G.: Int. J. Quantum Chem. 1993, 48, 15. <https://doi.org/10.1002/qua.560480103>
13. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1995, 102, 3629. <https://doi.org/10.1063/1.468592>
14. Lindgren I.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
15. Lindgren I., Mukherjee D.: Phys. Rep. 1987, 151, 93. <https://doi.org/10.1016/0370-1573(87)90073-1>
16. Mukherjee D., Pal S.: Adv. Quantum Chem. 1989, 20, 291. <https://doi.org/10.1016/S0065-3276(08)60629-2>
17. Mukherjee D.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 20, 409. <https://doi.org/10.1002/qua.560300737>
18. Mukherjee D.: Chem. Phys. Lett. 1986, 125, 207. <https://doi.org/10.1016/0009-2614(86)87050-6>
19. Stolarczyk L., Monkhorst H. J.: Phys. Rev. A 1985, 32, 725. <https://doi.org/10.1103/PhysRevA.32.725>
20. Kaldor U.: Theor. Chim. Acta 1991, 80, 427. <https://doi.org/10.1007/BF01119664>
21. Hughes S. R., Kaldor U.: J. Chem. Phys. 1993, 99, 6773. <https://doi.org/10.1063/1.465820>
22. Meissner L.: Chem. Phys. Lett. 1996, 255, 244. <https://doi.org/10.1016/0009-2614(96)00400-9>
23. Meissner L., Malinowski P.: Phys. Rev. A 2000, 61, 062510. <https://doi.org/10.1103/PhysRevA.61.062510>
24. Meissner L. Gryniakow J.: Collect. Czech. Chem. Commun. 2003, 68, 105. <https://doi.org/10.1135/cccc20030105>
25. Meissner L.: J. Chem. Phys. 1998, 108, 9227. <https://doi.org/10.1063/1.476377>
26. Landau A., Eliav E., Kaldor U.: Chem. Phys. Lett. 1999, 313, 399. <https://doi.org/10.1016/S0009-2614(99)01067-2>
27. Landau A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2000, 113, 9905. <https://doi.org/10.1063/1.1323258>
28. Landau A., Eliav E., Kaldor U.: Int. J. Mod. Phys. B 2003, 17, 5335. <https://doi.org/10.1142/S0217979203020466>
29. Landau A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2004, 121, 6634. <https://doi.org/10.1063/1.1788652>
30. Nooijen M.: J. Chem. Phys. 1996, 104, 2638. <https://doi.org/10.1063/1.470988>
31. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6441. <https://doi.org/10.1063/1.474000>
32. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6449. <https://doi.org/10.1063/1.473635>
33. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1997, 107, 6812. <https://doi.org/10.1063/1.474922>
34. Nooijen M.: Spectrochim. Acta, Part A 1999, 55, 539. <https://doi.org/10.1016/S1386-1425(98)00261-3>
35. Nooijen M., Lotrich V.: J. Chem. Phys. 2000, 113, 494. <https://doi.org/10.1063/1.481828>
36. Nooijen M.: J. Phys. Chem. A 2000, 104, 4553. <https://doi.org/10.1021/jp993983z>
37. Stanton J. F., Gauss J.: Theor. Chim. Acta 1995, 91, 267.
38. Stanton J. F., Gauss J.: J. Chem. Phys. 1994, 101, 8938. <https://doi.org/10.1063/1.468022>
39. Stanton J. F., Gauss J.: J. Chem. Phys. 1994, 100, 4695. <https://doi.org/10.1063/1.466253>
40. Gwaltney S. R., Bartlett R. J., Nooijen M.: J. Chem. Phys. 1999, 111, 58. <https://doi.org/10.1063/1.479361>
41. Wladyslawski M., Nooijen M. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 65. ACS, Washington 2002.
42. Wladyslawski M., Nooijen M.: Adv. Quantum Chem. 2005, in press.
43. Christiansen O., Gauss J., Stanton J. F., Jorgensen P.: J. Chem. Phys. 1999, 111, 525. <https://doi.org/10.1063/1.479332>
44. Tobita M., Perera S. A., Musial M., Bartlett R. J., Nooijen M., Lee J. S.: J. Chem. Phys. 2003, 119, 10713. <https://doi.org/10.1063/1.1619952>
45. Hazra A., Nooijen M.: Int. J. Quantum Chem. 2003, 95, 643. <https://doi.org/10.1002/qua.10723>
46. Hazra A., Chang H. H., Nooijen M.: J. Chem. Phys. 2004, 121, 2125. <https://doi.org/10.1063/1.1768173>
47. Hazra A., Nooijen M.: Phys. Chem. Chem. Phys. 2005, 7, 1759. <https://doi.org/10.1039/b500055f>
48. Stanton J. F., Sattelmeyer K. W., Gauss J., Allan M., Skalicky T., Bally T.: J. Chem. Phys. 2001, 115, 1. <https://doi.org/10.1063/1.1381575>
49. Bomble Y. J., Sattelmeyer K. W., Stanton J. F., Gauss J.: J. Chem. Phys. 2004, 121, 5236. <https://doi.org/10.1063/1.1780159>
50. Nooijen M.: Int. J. Quantum Chem. 2003, 95, 768. <https://doi.org/10.1002/qua.10724>
51. Hazra A., Nooijen M.: J. Chem. Phys. 2005, accepted.
52. Krylov A. I.: Chem. Phys. Lett. 2001, 350, 522. <https://doi.org/10.1016/S0009-2614(01)01316-1>
53. Krylov A. I.: Chem. Phys. Lett. 2001, 338, 375. <https://doi.org/10.1016/S0009-2614(01)00287-1>
54. Krylov A. I., Sherrill C. D.: J. Chem. Phys. 2002, 116, 3194. <https://doi.org/10.1063/1.1445116>
55. Slipchenko L. V., Krylov A. I.: J. Chem. Phys. 2003, 118, 9614. <https://doi.org/10.1063/1.1569845>
56. Levchenko S. V., Krylov A. I.: J. Chem. Phys. 2004, 120, 175. <https://doi.org/10.1063/1.1630018>
57. Cristian A. M. C., Shao Y., Krylov A. I.: J. Phys. Chem. A 2004, 108, 6581. <https://doi.org/10.1021/jp049007j>
58. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 5644. <https://doi.org/10.1063/1.1290609>
59. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 18. <https://doi.org/10.1063/1.481769>
60. Piecuch P., Kowalski K., Pimienta I. S. O., McGuire M. J.: Int. Rev. Phys. Chem. 2002, 21, 527. <https://doi.org/10.1080/0144235021000053811>
61. Mahapatra U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1998, 110, 6171. <https://doi.org/10.1063/1.478523>
62. Mahapatra U. S., Datta B., Bandyopadhyay B., Mukherjee D.: Adv. Quantum Chem. 1998, 30, 163. <https://doi.org/10.1016/S0065-3276(08)60507-9>
63. Mahapatra U. S., Datta B., Mukherjee D.: Mol. Phys. 1998, 94, 157. <https://doi.org/10.1080/00268979809482304>
64. Mahapatra U. S., Datta B., Mukherjee D.: J. Phys. Chem. A 1999, 103, 1822. <https://doi.org/10.1021/jp9832995>
65. Mahapatra U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1999, 110, 6171. <https://doi.org/10.1063/1.478523>
66. Chattopadhyay S., Mahapatra U. S., Ghosh P., Mukherjee D. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 109. ACS, Washington 2002.
67. Chattopadhyay S., Mahapatra U. S., Datta B., Mukherjee D.: Chem. Phys. Lett. 2002, 357, 426. <https://doi.org/10.1016/S0009-2614(02)00534-1>
68. Chattopadhyay S., Pahari D., Mukherjee D., Mahapatra U. S.: J. Chem. Phys. 2004, 120, 5968. <https://doi.org/10.1063/1.1650328>
69. Hubač I., Pittner J., Čársky P.: J. Chem. Phys. 2000, 112, 8779. <https://doi.org/10.1063/1.481493>
70. Pittner J., Nachtigall P., Čársky P., Hubač I.: J. Phys. Chem. A 2001, 105, 1354. <https://doi.org/10.1021/jp0032199>
71. Pittner J., Šmydke J., Čársky P., Hubač I.: J. Mol. Struct. (THEOCHEM) 2001, 547, 239. <https://doi.org/10.1016/S0166-1280(01)00473-0>
72. Pittner J.: J. Chem. Phys. 2003, 118, 10876. <https://doi.org/10.1063/1.1574785>
73. Li X. Z., Paldus J.: J. Chem. Phys. 1994, 101, 8812. <https://doi.org/10.1063/1.468074>
74. Li X. Z., Paldus J.: J. Chem. Phys. 1995, 102, 8059. <https://doi.org/10.1063/1.469005>
75. Li X. Z., Paldus J.: Int. J. Quantum Chem. 1998, 70, 65. <https://doi.org/10.1002/(SICI)1097-461X(1998)70:1<65::AID-QUA4>3.0.CO;2-3>
76. Jeziorski B., Monkhorst H. J.: Phys. Rev. A 1981, 24, 1668. <https://doi.org/10.1103/PhysRevA.24.1668>
77. Oliphant N., Adamowicz L.: J. Chem. Phys. 1991, 94, 1229. <https://doi.org/10.1063/1.460031>
78. Oliphant N., Adamowicz L.: Int. Rev. Phys. Chem. 1993, 12, 339. <https://doi.org/10.1080/01442359309353285>
79. Piecuch P., Oliphant N., Adamowicz L.: J. Chem. Phys. 1993, 99, 1875. <https://doi.org/10.1063/1.466179>
80. Adamowicz L., Malrieu J. P., Ivanov V. V.: J. Chem. Phys. 2000, 112, 10075. <https://doi.org/10.1063/1.481649>
81. Lyakh D. I., Ivanov V. V., Adamowicz L.: J. Chem. Phys. 2005, 122, 024108. <https://doi.org/10.1063/1.1824897>
82. Piecuch P., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1999, 110, 6103. <https://doi.org/10.1063/1.478517>
83. Kowalski K., Piecuch P.: Chem. Phys. Lett. 2001, 344, 165. <https://doi.org/10.1016/S0009-2614(01)00730-8>
84. Li X. Z., Paldus J.: J. Chem. Phys. 1997, 107, 6257. <https://doi.org/10.1063/1.474289>
85. Li X. Z., Paldus J.: J. Chem. Phys. 1998, 108, 637. <https://doi.org/10.1063/1.475425>
86. Li X. Z., Paldus J.: J. Chem. Phys. 1999, 110, 2844. <https://doi.org/10.1063/1.477926>
87. Li X. Z., Paldus J.: J. Chem. Phys. 2000, 113, 9966. <https://doi.org/10.1063/1.1323260>
88. Li X. Z., Paldus J.: Mol. Phys. 2000, 98, 1185. <https://doi.org/10.1080/00268970050080546>
89. Meissner L., Grabowski I.: Chem. Phys. Lett. 1999, 300, 53. <https://doi.org/10.1016/S0009-2614(98)01332-3>
90. Meissner L., Nooijen M.: Chem. Phys. Lett. 2000, 316, 501. <https://doi.org/10.1016/S0009-2614(99)01209-9>
91. Fulscher M. P., Andersson K., Roos B. O.: J. Phys. Chem. 1992, 96, 9204. <https://doi.org/10.1021/j100202a026>
92. Andersson K., Malmqvist P. A., Roos B. O.: J. Chem. Phys. 1992, 96, 1218. <https://doi.org/10.1063/1.462209>
93. Roos B. O., Andersson K., Fulscher M. P., Malmqvist P. A., Serrano-Andres L., Pierloot K., Merchan M.: Adv. Chem. Phys. 1996, 93, 219. <https://doi.org/10.1002/9780470141526.ch5>
94. Nakano H., Uchiyama R., Hirao K.: J. Comput. Chem. 2002, 23, 1166. <https://doi.org/10.1002/jcc.10050>
95. Kawashima Y., Hashimoto T., Nakano H., Hirao K.: Theor. Chem. Acc. 1999, 102, 49. <https://doi.org/10.1007/s002140050472>
96. Choe Y. K., Hashimoto T., Nakano H., Hirao K.: Chem. Phys. Lett. 1998, 295, 380. <https://doi.org/10.1016/S0009-2614(98)00986-5>
97. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1996, 104, 2652. <https://doi.org/10.1063/1.471010>
98. Nooijen M., Lotrich V.: J. Mol. Struct. (THEOCHEM) 2001, 547, 253. <https://doi.org/10.1016/S0166-1280(01)00475-4>
99. Nooijen M.: Int. J. Mol. Sci. 2002, 3, 656. <https://doi.org/10.3390/i3060656>
100. Chiles R. A., Dykstra C. E.: J. Chem. Phys. 1981, 74, 4544. <https://doi.org/10.1063/1.441643>
101. Handy N. C., Pople J. A., Headgordon M., Raghavachari K., Trucks G. W.: Chem. Phys. Lett. 1989, 164, 185. <https://doi.org/10.1016/0009-2614(89)85013-4>
102. Koch H., Kobayashi R., Jorgensen P.: Int. J. Quantum Chem. 1994, 49, 835. <https://doi.org/10.1002/qua.560490607>
103. Nooijen M., Lotrich V.: J. Chem. Phys. 2000, 113, 4549. <https://doi.org/10.1063/1.1288912>
104. Spiegelmann F., Malrieu J. P.: J. Phys. B 1984, 17, 1235. <https://doi.org/10.1088/0022-3700/17/7/012>
105. Spiegelmann F., Malrieu J. P.: J. Phys. B 1984, 17, 1259. <https://doi.org/10.1088/0022-3700/17/7/013>
106. Finley J., Malmqvist P. A., Roos B. O., Serrano-Andres L.: Chem. Phys. Lett. 1998, 288, 299. <https://doi.org/10.1016/S0009-2614(98)00252-8>
107. Finley J. P., Witek H. A.: J. Chem. Phys. 2000, 112, 3958. <https://doi.org/10.1063/1.480947>
108. Nakano H., Nakatani J., Hirao K.: J. Chem. Phys. 2001, 114, 1133. <https://doi.org/10.1063/1.1332992>
109. Sousa C., Dominguez-Ariza D., deGraaf C., Illas F.: J. Chem. Phys. 2000, 113, 9940. <https://doi.org/10.1063/1.1323264>
110. Legeza O., Roder J., Hess B. A.: Mol. Phys. 2003, 101, 2019. <https://doi.org/10.1080/0026897031000155625>
111. Krishnan R., Binkley J. S., Seeger R., Pople J. A.: J. Chem. Phys. 1980, 72, 650. <https://doi.org/10.1063/1.438955>
112. Sattelmeyer K. W., Schaefer H. F., Stanton J. F.: Chem. Phys. Lett. 2003, 378, 42. <https://doi.org/10.1016/S0009-2614(03)01181-3>
113. Császár P., Pulay P.: J. Mol. Struct. (THEOCHEM) 1984, 114, 31. <https://doi.org/10.1016/S0022-2860(84)87198-7>
114. Katriel J., Davidson E. R.: Proc. Natl. Acad. Sci. U.S.A., Phys. Sci. 1980, 77, 4403. <https://doi.org/10.1073/pnas.77.8.4403>
115. Pickup B. T., Snijders J. G.: Chem. Phys. Lett. 1988, 153, 69. <https://doi.org/10.1016/0009-2614(88)80134-9>
116. Matos J. M. O., Day O. W.: Int. J. Quantum Chem. 1987, 31, 871. <https://doi.org/10.1002/qua.560310604>
117. Morrison R. C.: J. Chem. Phys. 1992, 96, 3718. <https://doi.org/10.1063/1.461875>
118. Morrison R. C.: Int. J. Quantum Chem. 1994, 49, 649. <https://doi.org/10.1002/qua.560490510>
119. Sundholm D., Olsen J.: J. Chem. Phys. 1993, 98, 3999. <https://doi.org/10.1063/1.464028>
120. Olsen J., Sundholm D.: Chem. Phys. Lett. 1998, 288, 282. <https://doi.org/10.1016/S0009-2614(98)00302-9>
121. Nooijen M. J.: Chem. Phys. 1999, 111, 8356.
122. Szalay P. G., Nooijen M., Bartlett R. J.: J. Chem. Phys. 1995, 103, 281. <https://doi.org/10.1063/1.469641>