Collect. Czech. Chem. Commun. 2005, 70, 1017-1033
https://doi.org/10.1135/cccc20051017

Multireference State-Specific Coupled-Cluster Theory and Multiconfigurationality Index. BH Dissociation

Vladimir V. Ivanova, Ludwik Adamowiczb,* and Dmitry I. Lyakha

a Department of Chemistry, Kharkov National University, Kharkov, Ukraine
b Department of Chemistry, University of Arizona, Tucson, Arizona 85721, U.S.A.

References

1. Oliphant N., Adamowicz L.: Int. Rev. Phys. Chem. 1993, 12, 339. <https://doi.org/10.1080/01442359309353285>
2. Piecuch P., Oliphant N., Adamowicz L.: J. Chem. Phys. 1993, 99, 1875. <https://doi.org/10.1063/1.466179>
3. Adamowicz L., Piecuch P., Ghose K.: Mol. Phys. 1998, 94, 225. <https://doi.org/10.1080/00268979809482311>
4. Adamowicz L., Malrieu J.-P., Ivanov V. V.: J. Chem. Phys. 2000, 112, 10075. <https://doi.org/10.1063/1.481649>
5. Ivanov V. V., Adamowicz L.: J. Chem. Phys. 2000, 112, 9258. <https://doi.org/10.1063/1.481547>
6. Ivanov V. V., Adamowicz L.: J. Chem. Phys. 2000, 113, 8503. <https://doi.org/10.1063/1.1318758>
7. Ghose K. B., Adamowicz L., Pal S.: Int. J. Quantum Chem., submitted.
8. Adamowicz L., Malrieu J.-P.: J. Chem. Phys. 1996, 105, 9240. <https://doi.org/10.1063/1.472755>
9. Adamowicz L., Caballol R., Malrieu J.-P., Meller J.: Chem. Phys. Lett. 1996, 259, 619. <https://doi.org/10.1016/0009-2614(96)00746-4>
10. Adamowicz L., Malrieu J.-P. in: Modern Ideas in Coupled-Cluster Methods, Recent Adv. Comput. Chem. (R. J. Bartlett, Ed.), p. 307. World Scientific Publishing Co., Singapore 1997.
11. Adamowicz L., Malrieu J.-P., Ivanov V. V.: Int. J. Mol. Sci. 2002, 3, 522. <https://doi.org/10.3390/i3050522>
12. Ivanov V. V., Lyakh D. I., Adamowicz L.: Mol. Phys., in press.
13. Lyakh D. I., Ivanov V. V., Adamowicz L.: J. Chem. Phys. 2005, 122, 024108. <https://doi.org/10.1063/1.1824897>
14a. Malrieu J. P., Daudey J. P., Caballol R.: J. Chem. Phys. 1994, 101, 8908. <https://doi.org/10.1063/1.468083>
14b. Meller J., Malrieu J. P., Heully J. L.: Chem. Phys. Lett. 1995, 244, 440. <https://doi.org/10.1016/0009-2614(95)00959-8>
14c. Meller J., Malrieu J. P., Caballol R.: J. Chem. Phys. 1996, 104, 4068. <https://doi.org/10.1063/1.471220>
15. Mahapatra U. S., Datta B., Bandyopadhyay B., Mukherjee D. in: Adv. Quantum Chem. (D. Hanstrop and H. Persson, Eds), Vol. 30. Academic, San Diego 1998.
16a. Mahapatra U. S., Datta B., Mukherjee D.: Mol. Phys. 1998, 94, 157. <https://doi.org/10.1080/00268979809482304>
16b. Mahapatra U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1999, 110, 6171. <https://doi.org/10.1063/1.478523>
16c. Chattopadhyay S., Mahapatra U. S., Mukherjee D.: J. Chem. Phys. 1999, 111, 3820. <https://doi.org/10.1063/1.479685>
17a. Mahapatra U. S., Datta B., Mukherjee D.: Chem. Phys. Lett. 1999, 299, 42. <https://doi.org/10.1016/S0009-2614(98)01227-5>
17b. Mahapatra U. S., Datta B., Mukherjee D.: J. Phys. Chem. A 1999, 103, 1822. <https://doi.org/10.1021/jp9832995>
18. Ghosh P., Chattopadhyay S., Jana D., Mukherjee D.: Int. J. Mol. Sci. 2002, 3, 733. <https://doi.org/10.3390/i3060733>
19a. Masik J., Hubac I. in: Quantum Systems in Chemistry and Physics: Trends in Methods and Applications (R. McWeeny et al., Eds). Kluwer Academic, Dordrecht 1997.
19b. Masik J., Hubac I., Mach P.: J. Chem. Phys. 1998, 108, 6571. <https://doi.org/10.1063/1.476071>
20a. Jeziorski B., Monkhorst H. J.: Phys. Rev. A 1981, 24, 1668. <https://doi.org/10.1103/PhysRevA.24.1668>
20b. Jeziorski B., Paldus J.: J. Chem. Phys. 1988, 88, 5673. <https://doi.org/10.1063/1.454528>
21. Hubac I., Pittner J., Carsky P.: J. Chem. Phys. 2000, 112, 8779. <https://doi.org/10.1063/1.481493>
22. Pittner J.: J. Chem. Phys. 2003, 118, 10876. <https://doi.org/10.1063/1.1574785>
23. Monkhorst H. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
24. Sekino H., Bartlett R. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1984, 18, 255. <https://doi.org/10.1002/qua.560260826>
25. Dalgaard E., Monkhorst H. J.: Phys. Rev. A 1983, 28, 1217. <https://doi.org/10.1103/PhysRevA.28.1217>
26. Takahashi M., Paldus J.: J. Chem. Phys. 1986, 85, 1486. <https://doi.org/10.1063/1.451241>
27. Koch H., Jorgensen P.: J. Chem. Phys. 1990, 93, 3333. <https://doi.org/10.1063/1.458814>
28. Koch H., Jensen H. J. Aa., Jorgensen P., Halgaker T.: J. Chem. Phys. 1990, 93, 3345. <https://doi.org/10.1063/1.458815>
29. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1995, 102, 3629. <https://doi.org/10.1063/1.468592>
30. Watts J. D., Bartlett R. J.: Chem. Phys. Lett. 1995, 233, 81. <https://doi.org/10.1016/0009-2614(94)01434-W>
31. Watts J. D., Bartlett R. J.: Chem. Phys. Lett. 1996, 258, 581. <https://doi.org/10.1016/0009-2614(96)00708-7>
32. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6449. <https://doi.org/10.1063/1.473635>
33. Watts J. D., Bartlett R. J.: J. Chem. Phys. 1994, 101, 3073. <https://doi.org/10.1063/1.467620>
34. Geertsen J., Rittby M., Bartlett R. J.: Chem. Phys. Lett. 1989, 164, 57. <https://doi.org/10.1016/0009-2614(89)85202-9>
35. Comeau D. C., Bartlett R. J.: Chem. Phys. Lett. 1993, 207, 414. <https://doi.org/10.1016/0009-2614(93)89023-B>
36. Stanton J. F., Bartlett R. J.: J. Chem. Phys. 1993, 98, 7029. <https://doi.org/10.1063/1.464746>
37. Piecuch P., Bartlett R. J.: Adv. Quantum Chem. 1999, 34, 295. <https://doi.org/10.1016/S0065-3276(08)60534-1>
38. Hirata S., Nooijen M., Bartlett R. J.: Chem. Phys. Lett. 2000, 328, 459. <https://doi.org/10.1016/S0009-2614(00)00965-9>
39. Hirata S., Nooijen M., Bartlett R. J.: Chem. Phys. Lett. 2000, 326, 255. <https://doi.org/10.1016/S0009-2614(00)00772-7>
40. Nooijen M., Lotrich V.: J. Chem. Phys. 2000, 113, 494. <https://doi.org/10.1063/1.481828>
41. Nakatsuji H., Hirao K.: Chem. Phys. Lett. 1977, 47, 569. <https://doi.org/10.1016/0009-2614(77)85042-2>
42. Nakatsuji H., Hirao K.: J. Chem. Phys. 1978, 68, 2053. <https://doi.org/10.1063/1.436028>
43. Nakatsuji H. in: Computational Chemistry: Review of Current Trends (J. Leszczynski, Ed.), Vol. 2, p. 62. World Scientific, Singapore 1997.
44. Gwaltney S. R., Sherrill C. D., Head-Gordon M., Krylov A. I.: J. Chem. Phys. 2000, 113, 3548. <https://doi.org/10.1063/1.1286597>
45. Meissner H., Paldus J.: J. Chem. Phys. 2000, 113, 2594. <https://doi.org/10.1063/1.1305321>
46. Meissner H., Paldus J.: J. Chem. Phys. 2000, 113, 2622. <https://doi.org/10.1063/1.1305323>
47. Li X. Z., Paldus J.: Mol. Phys. 2000, 98, 1185. <https://doi.org/10.1080/00268970050080546>
48. Li X. Z., Paldus J.: J. Chem. Phys. 2000, 113, 9966. <https://doi.org/10.1063/1.1323260>
49. Li X. Z., Paldus J.: Int. J. Quantum Chem. 2000, 80, 743. <https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
50. Kowalski K., Piecuch P.: Phys. Rev. A 2000, 6105, 2506.
51. Kowalski K., Piecuch P.: Int. J. Quantum Chem. 2000, 80, 757. <https://doi.org/10.1002/1097-461X(2000)80:4/5<757::AID-QUA25>3.0.CO;2-A>
52. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 8490. <https://doi.org/10.1063/1.1318757>
53. Piecuch P., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1999, 110, 6103. <https://doi.org/10.1063/1.478517>
54. Hirata S., Nooijen M., Bartlett R. J.: Chem. Phys. Lett. 2000, 326, 255. <https://doi.org/10.1016/S0009-2614(00)00772-7>
55. Nooijen M.: J. Phys. Chem. A 2000, 104, 4553. <https://doi.org/10.1021/jp993983z>
56. Hirata S., Nooijen M., Grabowski I., Bartlett R. J.: J. Chem. Phys. 2001, 114, 3919. <https://doi.org/10.1063/1.1346578>
57. Musial M., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 2003, 118, 1128. <https://doi.org/10.1063/1.1527013>
58. Shuai Z., Bredas J. L.: Phys. Rev. B 2000, 62, 15452. <https://doi.org/10.1103/PhysRevB.62.15452>
59. Watts J. D., Bartlett R. J.: Spectrochim. Acta A 1999, 55, 495. <https://doi.org/10.1016/S1386-1425(98)00258-3>
60. Piecuch P., Kucharski S. A., Kowalski K.: Comput. Phys. Commun. 2002, 149, 71. <https://doi.org/10.1016/S0010-4655(02)00598-2>
61. Krylov A. I., Sherrill C. D., Head-Gordon M.: J. Chem. Phys. 2000, 113, 6509. <https://doi.org/10.1063/1.1311292>
62. Krylov A. I.: Chem. Phys. Lett. 2001, 338, 375. <https://doi.org/10.1016/S0009-2614(01)00287-1>
63. Sears J. S., Sherrill C. D., Krylov A. I.: J. Chem. Phys. 2003, 118, 9084. <https://doi.org/10.1063/1.1568735>
64. Szalay P. G., Gauss J.: J. Chem. Phys. 2000, 112, 4027. <https://doi.org/10.1063/1.480952>
65. Szalay P. G., Muller T., Lischka H.: Phys. Chem. Chem. Phys. 2000, 2, 2067. <https://doi.org/10.1039/b000224k>
66. Ivanov V. V., Adamowicz L.: J. Chem. Phys., in preparation.
67. Hirata S., Bartlett R. J.: Chem. Phys. Lett. 2000, 321, 216. <https://doi.org/10.1016/S0009-2614(00)00387-0>
68. Kállay M., Surján P. R.: J. Chem. Phys. 2001, 115, 2945. <https://doi.org/10.1063/1.1383290>
69. Olsen J.: J. Chem. Phys. 2000, 113, 7140. <https://doi.org/10.1063/1.1290005>
70. Olsen J.: Private communication.
71. Nooijen M., Lotrich V.: J. Chem. Phys. 2000, 113, 4549. <https://doi.org/10.1063/1.1288912>
72. Nooijen M., Lotrich V.: J. Mol. Struct. (THEOCHEM) 2001, 547, 253. <https://doi.org/10.1016/S0166-1280(01)00475-4>
73. Piecuch P., Adamowicz L.: J. Chem. Phys. 1994, 100, 1.
74. Piecuch P., Adamowicz L.: J. Chem. Phys. 1994, 100, 5857. <https://doi.org/10.1063/1.467149>
75. Piecuch P., Adamowicz L.: Chem. Phys. Lett. 1994, 221, 121. <https://doi.org/10.1016/0009-2614(94)87027-6>
76. Piecuch P., Adamowicz L.: J. Chem. Phys. 1995, 102, 898. <https://doi.org/10.1063/1.469156>
77. Alexandrov V., Piecuch P., Adamowicz L.: J. Chem. Phys. 1995, 102, 3301. <https://doi.org/10.1063/1.468641>
78. Ghose K. B., Piecuch P., Adamowicz L.: J. Chem. Phys. 1995, 103, 9331. <https://doi.org/10.1063/1.469993>
79. Ghose K. B., Piecuch P., Pal S., Adamowicz L.: J. Chem. Phys. 1996, 104, 6582. <https://doi.org/10.1063/1.471378>
80. Oliphant N., Adamowicz L.: J. Chem. Phys. 1991, 94, 1229. <https://doi.org/10.1063/1.460031>
81. Oliphant N., Adamowicz L.: J. Chem. Phys. 1991, 95, 6645. <https://doi.org/10.1063/1.461534>
82. Oliphant N., Adamowicz L.: J. Chem. Phys. 1992, 97, 3739. <https://doi.org/10.1063/1.461878>
83. Oliphant N., Adamowicz L.: Chem. Phys. Lett. 1992, 190, 13. <https://doi.org/10.1016/0009-2614(92)86094-X>
84. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 5644. <https://doi.org/10.1063/1.1290609>