Collect. Czech. Chem. Commun.
2005, 70, 1017-1033
https://doi.org/10.1135/cccc20051017
Multireference State-Specific Coupled-Cluster Theory and Multiconfigurationality Index. BH Dissociation
Vladimir V. Ivanova, Ludwik Adamowiczb,* and Dmitry I. Lyakha
a Department of Chemistry, Kharkov National University, Kharkov, Ukraine
b Department of Chemistry, University of Arizona, Tucson, Arizona 85721, U.S.A.
References
1. Int. Rev. Phys. Chem. 1993, 12, 339.
< N., Adamowicz L.: https://doi.org/10.1080/01442359309353285>
2. J. Chem. Phys. 1993, 99, 1875.
< P., Oliphant N., Adamowicz L.: https://doi.org/10.1063/1.466179>
3. Mol. Phys. 1998, 94, 225.
< L., Piecuch P., Ghose K.: https://doi.org/10.1080/00268979809482311>
4. J. Chem. Phys. 2000, 112, 10075.
< L., Malrieu J.-P., Ivanov V. V.: https://doi.org/10.1063/1.481649>
5. J. Chem. Phys. 2000, 112, 9258.
< V. V., Adamowicz L.: https://doi.org/10.1063/1.481547>
6. J. Chem. Phys. 2000, 113, 8503.
< V. V., Adamowicz L.: https://doi.org/10.1063/1.1318758>
7. Ghose K. B., Adamowicz L., Pal S.: Int. J. Quantum Chem., submitted.
8. J. Chem. Phys. 1996, 105, 9240.
< L., Malrieu J.-P.: https://doi.org/10.1063/1.472755>
9. Chem. Phys. Lett. 1996, 259, 619.
< L., Caballol R., Malrieu J.-P., Meller J.: https://doi.org/10.1016/0009-2614(96)00746-4>
10. Adamowicz L., Malrieu J.-P. in: Modern Ideas in Coupled-Cluster Methods, Recent Adv. Comput. Chem. (R. J. Bartlett, Ed.), p. 307. World Scientific Publishing Co., Singapore 1997.
11. Int. J. Mol. Sci. 2002, 3, 522.
< L., Malrieu J.-P., Ivanov V. V.: https://doi.org/10.3390/i3050522>
12. Ivanov V. V., Lyakh D. I., Adamowicz L.: Mol. Phys., in press.
13. J. Chem. Phys. 2005, 122, 024108.
< D. I., Ivanov V. V., Adamowicz L.: https://doi.org/10.1063/1.1824897>
14a. J. Chem. Phys. 1994, 101, 8908.
< J. P., Daudey J. P., Caballol R.: https://doi.org/10.1063/1.468083>
14b. Chem. Phys. Lett. 1995, 244, 440.
< J., Malrieu J. P., Heully J. L.: https://doi.org/10.1016/0009-2614(95)00959-8>
14c. J. Chem. Phys. 1996, 104, 4068.
< J., Malrieu J. P., Caballol R.: https://doi.org/10.1063/1.471220>
15. Mahapatra U. S., Datta B., Bandyopadhyay B., Mukherjee D. in: Adv. Quantum Chem. (D. Hanstrop and H. Persson, Eds), Vol. 30. Academic, San Diego 1998.
16a. Mol. Phys. 1998, 94, 157.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1080/00268979809482304>
16b. J. Chem. Phys. 1999, 110, 6171.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1063/1.478523>
16c. J. Chem. Phys. 1999, 111, 3820.
< S., Mahapatra U. S., Mukherjee D.: https://doi.org/10.1063/1.479685>
17a. Chem. Phys. Lett. 1999, 299, 42.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1016/S0009-2614(98)01227-5>
17b. J. Phys. Chem. A 1999, 103, 1822.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1021/jp9832995>
18. Int. J. Mol. Sci. 2002, 3, 733.
< P., Chattopadhyay S., Jana D., Mukherjee D.: https://doi.org/10.3390/i3060733>
19a. Masik J., Hubac I. in: Quantum Systems in Chemistry and Physics: Trends in Methods and Applications (R. McWeeny et al., Eds). Kluwer Academic, Dordrecht 1997.
19b. J. Chem. Phys. 1998, 108, 6571.
< J., Hubac I., Mach P.: https://doi.org/10.1063/1.476071>
20a. Phys. Rev. A 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
20b. J. Chem. Phys. 1988, 88, 5673.
< B., Paldus J.: https://doi.org/10.1063/1.454528>
21. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Carsky P.: https://doi.org/10.1063/1.481493>
22. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
23. Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
H. J.:
24. Int. J. Quantum Chem., Quantum Chem. Symp. 1984, 18, 255.
< H., Bartlett R. J.: https://doi.org/10.1002/qua.560260826>
25. Phys. Rev. A 1983, 28, 1217.
< E., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.28.1217>
26. J. Chem. Phys. 1986, 85, 1486.
< M., Paldus J.: https://doi.org/10.1063/1.451241>
27. J. Chem. Phys. 1990, 93, 3333.
< H., Jorgensen P.: https://doi.org/10.1063/1.458814>
28. J. Chem. Phys. 1990, 93, 3345.
< H., Jensen H. J. Aa., Jorgensen P., Halgaker T.: https://doi.org/10.1063/1.458815>
29. J. Chem. Phys. 1995, 102, 3629.
< M., Bartlett R. J.: https://doi.org/10.1063/1.468592>
30. Chem. Phys. Lett. 1995, 233, 81.
< J. D., Bartlett R. J.: https://doi.org/10.1016/0009-2614(94)01434-W>
31. Chem. Phys. Lett. 1996, 258, 581.
< J. D., Bartlett R. J.: https://doi.org/10.1016/0009-2614(96)00708-7>
32. J. Chem. Phys. 1997, 106, 6449.
< M., Bartlett R. J.: https://doi.org/10.1063/1.473635>
33. J. Chem. Phys. 1994, 101, 3073.
< J. D., Bartlett R. J.: https://doi.org/10.1063/1.467620>
34. Chem. Phys. Lett. 1989, 164, 57.
< J., Rittby M., Bartlett R. J.: https://doi.org/10.1016/0009-2614(89)85202-9>
35. Chem. Phys. Lett. 1993, 207, 414.
< D. C., Bartlett R. J.: https://doi.org/10.1016/0009-2614(93)89023-B>
36. J. Chem. Phys. 1993, 98, 7029.
< J. F., Bartlett R. J.: https://doi.org/10.1063/1.464746>
37. Adv. Quantum Chem. 1999, 34, 295.
< P., Bartlett R. J.: https://doi.org/10.1016/S0065-3276(08)60534-1>
38. Chem. Phys. Lett. 2000, 328, 459.
< S., Nooijen M., Bartlett R. J.: https://doi.org/10.1016/S0009-2614(00)00965-9>
39. Chem. Phys. Lett. 2000, 326, 255.
< S., Nooijen M., Bartlett R. J.: https://doi.org/10.1016/S0009-2614(00)00772-7>
40. J. Chem. Phys. 2000, 113, 494.
< M., Lotrich V.: https://doi.org/10.1063/1.481828>
41. Chem. Phys. Lett. 1977, 47, 569.
< H., Hirao K.: https://doi.org/10.1016/0009-2614(77)85042-2>
42. J. Chem. Phys. 1978, 68, 2053.
< H., Hirao K.: https://doi.org/10.1063/1.436028>
43. Nakatsuji H. in: Computational Chemistry: Review of Current Trends (J. Leszczynski, Ed.), Vol. 2, p. 62. World Scientific, Singapore 1997.
44. J. Chem. Phys. 2000, 113, 3548.
< S. R., Sherrill C. D., Head-Gordon M., Krylov A. I.: https://doi.org/10.1063/1.1286597>
45. J. Chem. Phys. 2000, 113, 2594.
< H., Paldus J.: https://doi.org/10.1063/1.1305321>
46. J. Chem. Phys. 2000, 113, 2622.
< H., Paldus J.: https://doi.org/10.1063/1.1305323>
47. Mol. Phys. 2000, 98, 1185.
< X. Z., Paldus J.: https://doi.org/10.1080/00268970050080546>
48. J. Chem. Phys. 2000, 113, 9966.
< X. Z., Paldus J.: https://doi.org/10.1063/1.1323260>
49. Int. J. Quantum Chem. 2000, 80, 743.
< X. Z., Paldus J.: https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
50. Phys. Rev. A 2000, 6105, 2506.
K., Piecuch P.:
51. Int. J. Quantum Chem. 2000, 80, 757.
< K., Piecuch P.: https://doi.org/10.1002/1097-461X(2000)80:4/5<757::AID-QUA25>3.0.CO;2-A>
52. J. Chem. Phys. 2000, 113, 8490.
< K., Piecuch P.: https://doi.org/10.1063/1.1318757>
53. J. Chem. Phys. 1999, 110, 6103.
< P., Kucharski S. A., Bartlett R. J.: https://doi.org/10.1063/1.478517>
54. Chem. Phys. Lett. 2000, 326, 255.
< S., Nooijen M., Bartlett R. J.: https://doi.org/10.1016/S0009-2614(00)00772-7>
55. J. Phys. Chem. A 2000, 104, 4553.
< M.: https://doi.org/10.1021/jp993983z>
56. J. Chem. Phys. 2001, 114, 3919.
< S., Nooijen M., Grabowski I., Bartlett R. J.: https://doi.org/10.1063/1.1346578>
57. J. Chem. Phys. 2003, 118, 1128.
< M., Kucharski S. A., Bartlett R. J.: https://doi.org/10.1063/1.1527013>
58. Phys. Rev. B 2000, 62, 15452.
< Z., Bredas J. L.: https://doi.org/10.1103/PhysRevB.62.15452>
59. Spectrochim. Acta A 1999, 55, 495.
< J. D., Bartlett R. J.: https://doi.org/10.1016/S1386-1425(98)00258-3>
60. Comput. Phys. Commun. 2002, 149, 71.
< P., Kucharski S. A., Kowalski K.: https://doi.org/10.1016/S0010-4655(02)00598-2>
61. J. Chem. Phys. 2000, 113, 6509.
< A. I., Sherrill C. D., Head-Gordon M.: https://doi.org/10.1063/1.1311292>
62. Chem. Phys. Lett. 2001, 338, 375.
< A. I.: https://doi.org/10.1016/S0009-2614(01)00287-1>
63. J. Chem. Phys. 2003, 118, 9084.
< J. S., Sherrill C. D., Krylov A. I.: https://doi.org/10.1063/1.1568735>
64. J. Chem. Phys. 2000, 112, 4027.
< P. G., Gauss J.: https://doi.org/10.1063/1.480952>
65. Phys. Chem. Chem. Phys. 2000, 2, 2067.
< P. G., Muller T., Lischka H.: https://doi.org/10.1039/b000224k>
66. Ivanov V. V., Adamowicz L.: J. Chem. Phys., in preparation.
67. Chem. Phys. Lett. 2000, 321, 216.
< S., Bartlett R. J.: https://doi.org/10.1016/S0009-2614(00)00387-0>
68. J. Chem. Phys. 2001, 115, 2945.
< M., Surján P. R.: https://doi.org/10.1063/1.1383290>
69. J. Chem. Phys. 2000, 113, 7140.
< J.: https://doi.org/10.1063/1.1290005>
70. Olsen J.: Private communication.
71. J. Chem. Phys. 2000, 113, 4549.
< M., Lotrich V.: https://doi.org/10.1063/1.1288912>
72. J. Mol. Struct. (THEOCHEM) 2001, 547, 253.
< M., Lotrich V.: https://doi.org/10.1016/S0166-1280(01)00475-4>
73. J. Chem. Phys. 1994, 100, 1.
P., Adamowicz L.:
74. J. Chem. Phys. 1994, 100, 5857.
< P., Adamowicz L.: https://doi.org/10.1063/1.467149>
75. Chem. Phys. Lett. 1994, 221, 121.
< P., Adamowicz L.: https://doi.org/10.1016/0009-2614(94)87027-6>
76. J. Chem. Phys. 1995, 102, 898.
< P., Adamowicz L.: https://doi.org/10.1063/1.469156>
77. J. Chem. Phys. 1995, 102, 3301.
< V., Piecuch P., Adamowicz L.: https://doi.org/10.1063/1.468641>
78. J. Chem. Phys. 1995, 103, 9331.
< K. B., Piecuch P., Adamowicz L.: https://doi.org/10.1063/1.469993>
79. J. Chem. Phys. 1996, 104, 6582.
< K. B., Piecuch P., Pal S., Adamowicz L.: https://doi.org/10.1063/1.471378>
80. J. Chem. Phys. 1991, 94, 1229.
< N., Adamowicz L.: https://doi.org/10.1063/1.460031>
81. J. Chem. Phys. 1991, 95, 6645.
< N., Adamowicz L.: https://doi.org/10.1063/1.461534>
82. J. Chem. Phys. 1992, 97, 3739.
< N., Adamowicz L.: https://doi.org/10.1063/1.461878>
83. Chem. Phys. Lett. 1992, 190, 13.
< N., Adamowicz L.: https://doi.org/10.1016/0009-2614(92)86094-X>
84. J. Chem. Phys. 2000, 113, 5644.
< K., Piecuch P.: https://doi.org/10.1063/1.1290609>