Collect. Czech. Chem. Commun.
2005, 70, 941-950
https://doi.org/10.1135/cccc20050941
Notes on the Riccati Equation
Eugene S. Kryachko
Bogoliubov Institute for Theoretical Physics, Kiev, 03143 Ukraine and Department of Chemistry, Bat. B6c, University of Liège Sart-Tilman, B-4000 Liège 1, Belgium
References
1. Riccati J.: Actorum Eruditorum quae Lipsiae Publicantur 1724, Suppl. 8, 66.
2. Watson G. N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, London 1958.
3. Ince E. L.: Ordinary Differential Equations. Dover, New York 1956.
4. Kamke E.: Differentialgleichungen: Lösungsmethoden und Lösungen. Becker & Erler Kom.-Ges., Leipzig 1943.
5. Reid W. T.: Riccati Differential Equations. Academic Press, New York 1972.
6. Boyce W. E., DiPrima R. C.: Elementary Differential Equations and Boundary Value Problem. Wiley, New York 1986.
7. Zwillinger D.: Handbook of Differential Equations. Academic Press, Boston 1989.
8. Stepanov V. V.: A Course of Differential Equations. GITTL, Moscow 1953.
9. Zelikin M. I.: Homogeneous Spaces and Riccati Equation in Variational Calculus. Factorial, Moscow 1998.
10a. Polyanin A. D., Zaitsev V. F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton 1995.
10b. Zaitsev V. F., Polyanin A. D.: Handbook of Ordinary Differential Equations. FizMatLit, Moscow 2001.
11. Am. J. Phys. 1997, 65, 237.
< S. B.: https://doi.org/10.1119/1.18535>
12. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2002, 65, 047602.
M., Rosu H. C.:
13. Comput. Phys. Commun. 2003, 152, 165.
< R., Mandelzweig V. B.: https://doi.org/10.1016/S0010-4655(02)00821-4>
14a. Phys. Rev. 1931, 38, 1612.
< L. A.: https://doi.org/10.1103/PhysRev.38.1612>
14b. Lect. Notes Math. 1974, 415, 316.
< E., Hehenberger M.: https://doi.org/10.1007/BFb0065542>
14c. Mol. Phys. 1975, 29, 1545.
< Z. S., Brändas E.: https://doi.org/10.1080/00268977500101351>
14d. Shankar R.: Principles of Quantum Mechanics, p. 240. Plenum, New York 1980.
14e. Europhys. Lett. 2005, 69, 685.
< Z.-Q., Xu B.-W.: https://doi.org/10.1209/epl/i2004-10418-8>
15. Cooper F., Khare A., Sukhatme U.: Supersymmetry in Quantum Mechanics. World Scientific, Singapore 2001; and references therein.
16a. Phys. Rev. A: At., Mol., Opt. Phys. 1996, 53, 1330.
< N., Bessis G.: https://doi.org/10.1103/PhysRevA.53.1330>
16b. J. Chem. Phys. 1995, 103, 3006.
< N., Bessis G.: https://doi.org/10.1063/1.470489>
17a. Phys. Rev. A: At., Mol., Opt. Phys. 1991, 44, 7037.
< R., Salem L. D.: https://doi.org/10.1103/PhysRevA.44.7037>
17b. Phys. Lett. A 1994, 194, 343.
< F. M.: https://doi.org/10.1016/0375-9601(94)91291-2>
17c. Int. J. Quantum Chem. 1997, 62, 239.
< M., Recamier J.: https://doi.org/10.1002/(SICI)1097-461X(1997)62:3<239::AID-QUA1>3.0.CO;2-X>
17d. Theor. Chem. Acc. 2000, 104, 179.
< J., Pena J. J., Morales-Guzman J. D.: https://doi.org/10.1007/s002140000130>
17e. Phys. Lett. A 2001, 285, 11.
< B., Das T. K.: https://doi.org/10.1016/S0375-9601(01)00300-0>
18a. J. Mol. Struct. (THEOCHEM) 1998, 426, 1.
< S., Fraga E. S.: https://doi.org/10.1016/S0166-1280(97)00301-1>
18b. Theor. Chem. Acc. 2001, 106, 434.
S., Garcìa de la Vega J. M., Fraga E. S.:
18c. Can. J. Phys. 2002, 80, 1053.
< S., Garcìa de la Vega J. M., Fraga E. S.: https://doi.org/10.1139/p02-073>
18d. Fraga S., Garcìa de la Vega J. M., Fraga E. S.: The Schrödinger and Riccati Equations. Lect. Notes Chem. 1999, 70.
19a. Mol. Phys. 2004, 102, 1165.
< B. L., Cohen M.: https://doi.org/10.1080/00268970410001728771>
19b. Burrows B. L., Cohen M. in: Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin (E. J. Brändas and E. S. Kryachko, Eds), Vol. 3. Kluwer, Dordrecht 2004.
20. Ann. Acad. Sci. A I Math. 1981, 6, 369.
S. B., Gundersen G. G., Laine I.:
21. J. Math. Anal. Appl. 1995, 190, 285.
J. H.:
22. J. Math. Anal. Appl. 2003, 277, 367.
< W.: https://doi.org/10.1016/S0022-247X(02)00536-X>
23a. Math. Ann. 1926, 95, 409.
< H.: https://doi.org/10.1007/BF01206624>
23b. Zh. Eksp. Teor. Fiz. 1949, 19, 247.
G. F.:
23c. Nuovo Cim. 1957, 6, 601.
< S.: https://doi.org/10.1007/BF02781366>
23d. Coddington E. A., Levinson N.: Theory of Ordinary Differential Equations. McGraw–Hill, New York 1955.
23e. J. Phys. A: Math. Gen. 1996, 29, 6009.
< B., Reyes M. A.: https://doi.org/10.1088/0305-4470/29/18/029>
23f. J. Funct. Anal. 1998, 154, 513.
< Y., Simon B.: https://doi.org/10.1006/jfan.1997.3192>
23g. J. Comput. Appl. Math. 2004, 171, 393.
< K. M.: https://doi.org/10.1016/j.cam.2004.01.021>
24. J. Math. Ser. I 1841, VI, 1.
J.:
25. J. Phys. A: Math. Gen. 1991, 24, 4965.
< V. M.: https://doi.org/10.1088/0305-4470/24/21/010>