Collect. Czech. Chem. Commun. 2005, 70, 579-604
https://doi.org/10.1135/cccc20050579

Equations of Motion Theory for Electron Affinities

Jack Simons

Chemistry Department and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A.

References

1. Rienstra-Kiracofe J. C., Tschumper G. S., Schaefer H. F., III, Nandi S., Ellison G. B.: Acc. Chem. Res. 2002, 102, 231.
2. Herzberg G.: Molecular Spectra and Molecular Structure I, p. 512. Van Nostrand, New York 1950.
3a. Gutsev G. I., Boldyrev A. I.: Adv. Chem. Phys. 1985, 61, 169. <https://doi.org/10.1002/9780470142851.ch3>
3b. Baker J., Nobes R. H., Radom L.: J. Comput. Chem. 1986, 7, 349. <https://doi.org/10.1002/jcc.540070312>
3c. Simons J., Jordan K. D.: Chem. Rev. 1987, 87, 535. <https://doi.org/10.1021/cr00079a004>
3d. Kalcher J., Sax A. F.: Chem. Rev. 1994, 94, 2291. <https://doi.org/10.1021/cr00032a004>
3e. Kalcher J.: J. Ann. Rep., Sect. C, R. Soc. Chem. 1996, 93, 147. <https://doi.org/10.1039/pc9969300147>
3f. Berry R. S.: Chem. Rev. 1969, 69, 533. <https://doi.org/10.1021/cr60260a003>
4a. Clementi E., McLean A. D.: Phys. Rev. A 1964, 133, 419. <https://doi.org/10.1103/PhysRev.133.A419>
4b. Clementi E., McLean A. D., Raimondi D. L., Yoshimine M.: Phys. Rev. A 1964, 133, 1274. <https://doi.org/10.1103/PhysRev.133.A1274>
4c. Clementi E.: Phys. Rev. A 1964, 135, 980. <https://doi.org/10.1103/PhysRev.135.A980>
4d. Pekeris C. L.: Phys. Rev. 1958, 112, 1649. <https://doi.org/10.1103/PhysRev.112.1649>
4e. Weiss A. W.: Phys. Rev. 1968, 166, 70. <https://doi.org/10.1103/PhysRev.166.70>
4f. Cade P. E.: J. Chem. Phys. 1967, 47, 2390. <https://doi.org/10.1063/1.1703322>
4g. Cade P. E.: Proc. R. Soc. A 1967, 91, 842. <https://doi.org/10.1088/0370-1328/91/4/310>
4h. Taylor S., Harris F. E.: J. Chem. Phys. 1963, 39, 1012. <https://doi.org/10.1063/1.1734350>
4i. Bondybey V., Pearson P. K., Schaefer H. F.: J. Chem. Phys. 1972, 57, 1123. <https://doi.org/10.1063/1.1678368>
4j. Feller D., Davidson E. R.: J. Chem. Phys. 1989, 90, 1024. <https://doi.org/10.1063/1.456154>
4k. Feller D., Davidson E. R.: J. Chem. Phys. 1985, 82, 1024. <https://doi.org/10.1063/1.448855>
4l. Hotop H., Lineberger W. C.: J. Phys. Chem. Ref. Data 1975, 4, 539. <https://doi.org/10.1063/1.555524>
4m. Hotop H., Lineberger W. C.: J. Phys. Chem. Ref. Data 1985, 14, 731. <https://doi.org/10.1063/1.555735>
4n. Andersen T., Haugen H. K., Hotop H.: J. Phys. Chem. Ref. Data 1999, 28, 1511. <https://doi.org/10.1063/1.556047>
4o. Janousek B. K., Brauman J. I. in: Gas Phase Ion Chemistry (M. T. Bowers, Ed.), Vol. 2, p. 53. Academic Press, New York 1979.
4p. Miller T. M. in: CRC Handbook of Chemistry and Physics (R. C. West, M. J. Astle and W. H. Beyer, Eds), 74th ed., pp. 10-180–10-191. CRC Press, Boca Raton (FL) 1993.
4q. Bartmess J. E. in: NIST Chemistry Web-Book, NIST Standard Reference Database Number 69 (W. G. Ballard and P. J. Linstrom, Eds). National Institute of Standards, Technology, Gaithersburg (MD) February 2000. http://webbook.nist.gov.
4r. Franklin J. L., Dillard J. G., Field F. H.: Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions. Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. (U.S.) 26, 1969.
5a. Massey H.: Negative Ions. Cambridge University Press, Cambridge 1976.
5b. Branscomb L. M.: Atomic and Molecular Processes (D. R. Bates, Ed.). Academic Press, New York 1962.
6a. Goscinski O., Lukman B.: Chem. Phys. Lett. 1970, 6, 573. <https://doi.org/10.1016/0009-2614(70)87007-5>
6b. Jørgensen P., Oddershede J.: J. Chem. Phys. 1972, 57, 277. <https://doi.org/10.1063/1.1677957>
6c. Linderberg J., Jørgensen P., Oddershede J., Ratner M.: J. Chem. Phys. 1972, 56, 6213. <https://doi.org/10.1063/1.1677174>
6d. Csanak G., Taylor H. S., Yaris R.: Phys. Rev. A: At., Mol., Opt. Phys. 1971, 3, 6213. <https://doi.org/10.1103/PhysRevA.3.1322>
6e. Csanak G., Taylor H. S., Yaris R.: Adv. At. Mol. Phys. 1971, 7, 288.
6f. Linderberg J., Öhrn Y.: J. Chem. Phys. 1968, 49, 716. <https://doi.org/10.1063/1.1670129>
6g. Linderberg J., Öhrn Y.: Chem. Phys. Lett. 1967, 1, 295. <https://doi.org/10.1016/0009-2614(67)80025-3>
6h. Linderberg J., Öhrn Y.: Proc. R. Soc., Sect. A 1963, 185, 445.
6i. Öhrn Y., Linderberg J.: Phys. Rev. A 1965, 139, 1063. <https://doi.org/10.1103/PhysRev.139.A1063>
6j. Linderberg J., Ratner M.: Chem. Phys. Lett. 1970, 6, 37. <https://doi.org/10.1016/0009-2614(70)80069-0>
6k. Linderberg J., Thulstrup E. W.: J. Chem. Phys. 1968, 49, 710. <https://doi.org/10.1063/1.1670128>
6l. Reinhardt W. P., Doll J. D.: J. Chem. Phys. 1969, 50, 2767. <https://doi.org/10.1063/1.1671446>
6m. Schneider B., Taylor H. S., Yaris R.: Phys. Rev. A: At., Mol., Opt. Phys. 1970, 1, 855. <https://doi.org/10.1103/PhysRevA.1.855>
6n. Doll J. D., Reinhardt W. P.: J. Chem. Phys. 1972, 57, 1169. <https://doi.org/10.1063/1.1678374>
6o. Jørgensen P., Simons J.: J. Chem. Phys. 1975, 63, 5302. <https://doi.org/10.1063/1.431332>
6p. Linderberg J., Öhrn Y.: Propagators in Quantum Chemistry. Academic Press, London 1973.
6q. Cederbaum L. S., Holneicher G., Peyerimhoff S.: Chem. Phys. Lett. 1971, 11, 421. <https://doi.org/10.1016/0009-2614(71)80375-5>
6r. Cederbaum L. S., Holneicher G., von Niessen W.: Chem. Phys. Lett. 1973, 18, 503. <https://doi.org/10.1016/0009-2614(73)80451-8>
6s. Cederbaum L. S.: Theor. Chim. Acta 1973, 31, 239. <https://doi.org/10.1007/BF00526514>
6t. Yarlagadda B. S., Csanak Gy., Taylor H. S., Schneider B., Yaris R.: Phys. Rev. A: At., Mol., Opt. Phys. 1973, 7, 146. <https://doi.org/10.1103/PhysRevA.7.146>
6u. Pickup B. T., Goscinski O.: Mol. Phys. 1973, 36, 1013. <https://doi.org/10.1080/00268977300102261>
6v. Purvis G. D., Öhrn Y.: J. Chem. Phys. 1974, 60, 4063. <https://doi.org/10.1063/1.1680858>
6w. Purvis G. D., Öhrn Y.: J. Chem. Phys. 1975, 62, 2045. <https://doi.org/10.1063/1.430793>
6x. For a more recent overview, see Ortiz J. V., Leszczynski J. (Eds): Computational Chemistry: Reviews of Current Trends, Vol. 2, p. 1. World Scientific, Singapore 1997.
6y. Purvis G. D., Öhrn Y.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 359.
7. A good overview of time-dependent response function theory, including linear and non-linear response functions is offered in Olsen J., Jorgensen P. in: Modern Electronic Structure Theory (D. Yarkony, Ed.), p. 857. World Scientific, Singapore 1995.
8a. Dunning T. H., McKoy V.: J. Chem. Phys. 1967, 47, 1735. <https://doi.org/10.1063/1.1712158>
8b. Dunning T. H., McKoy V.: J. Chem. Phys. 1968, 48, 5263. <https://doi.org/10.1063/1.1668203>
8c. Shibuya T. I., McKoy V.: J. Chem. Phys. 1970, 53, 2208. <https://doi.org/10.1063/1.1674482>
9a. Rowe D. J.: Rev. Mod. Phys. 1968, 40, 153. <https://doi.org/10.1103/RevModPhys.40.153>
9b. Rowe D. J.: Nuclear Collective Motion – Models and Theory. Methuen, London 1970.
10a. Simons J., Smith W. D.: J. Chem. Phys. 1973, 58, 4899. <https://doi.org/10.1063/1.1679074>
10b. Simons J.: J. Chem. Phys. 1971, 55, 1218. <https://doi.org/10.1063/1.1676208>
10c. Simons J.: J. Chem. Phys. 1972, 57, 3787. <https://doi.org/10.1063/1.1678845>
11a. Simons J., Jørgensen P.: J. Chem. Phys. 1976, 64, 1413. <https://doi.org/10.1063/1.432410>
11b. Tsung-Tai Chen, Simons J., Jordan K. D.: Chem. Phys. 1976, 14, 145. <https://doi.org/10.1016/0301-0104(76)80033-X>
11c. Simons J.: J. Chem. Phys. 1976, 64, 4541. <https://doi.org/10.1063/1.432084>
11d. Simons J.: Int. J. Quantum Chem. 1977, 12, 227. <https://doi.org/10.1002/qua.560120119>
11e. Dalgaard E., Simons J.: J. Phys. B: At., Mol. Opt. Phys. 1977, 10, 2767. <https://doi.org/10.1088/0022-3700/10/14/012>
11f. Simons J.: Annu. Rev. Phys. Chem. 1977, 28, 15. <https://doi.org/10.1146/annurev.pc.28.100177.000311>
11g. Banerjee A., Shepard R., Simons J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 389.
11h. Donnelly R. A., Simons J.: J. Chem. Phys. 1980, 73, 2858. <https://doi.org/10.1063/1.440455>
12a. Jørgensen P., Simons J.: Second Quantization Based Methods in Quantum Chemistry. Academic Press, New York 1981.
12b. Helgaker T., Jørgensen P., Olsen J.: Modern Electronic Structure Theory. J. Wiley, New York 2000.
13. Manne R.: Chem. Phys. Lett. 1977, 45, 470. <https://doi.org/10.1016/0009-2614(77)80066-3>
14. The first- and second-order density matrices, respectively, have elements given by 〈0,N| j+ k |0,N〉 and 〈0,N| j+ k+ l h |0,N〉.
15a. Simons J., Chen T.-T., Smith W. D.: Chem. Phys. Lett. 1974, 26, 296.
15b. Smith W. D., Chen T.-T., Simons J.: Chem. Phys. Lett. 1974, 27, 499. <https://doi.org/10.1016/0009-2614(74)80290-3>
15c. Griffing K. M., Simons J.: J. Chem. Phys. 1975, 62, 535. <https://doi.org/10.1063/1.430507>
15d. Kenney J., Simons J.: J. Chem. Phys. 1975, 62, 592. <https://doi.org/10.1063/1.430458>
15e. Griffing K., Kenney J., Simons J., Jordan K.: J. Chem. Phys. 1975, 63, 4073. <https://doi.org/10.1063/1.431850>
15f. Griffing K., Simons J.: J. Chem. Phys. 1976, 64, 3610. <https://doi.org/10.1063/1.432712>
15g. Jordan K. D., Griffing K. M., Kenney J., Andersen E. L., Simons J.: J. Chem. Phys. 1976, 64, 4730. <https://doi.org/10.1063/1.432059>
15h. Andersen E., Simons J.: J. Chem. Phys. 1976, 64, 4548. <https://doi.org/10.1063/1.432086>
15i. Jordan K. D., Simons J.: J. Chem. Phys. 1976, 65, 1601. <https://doi.org/10.1063/1.433223>
15j. Andersen E., Simons J.: J. Chem. Phys. 1976, 65, 5393. <https://doi.org/10.1063/1.433042>
15k. Andersen E., Simons J.: J. Chem. Phys. 1977, 66, 2427. <https://doi.org/10.1063/1.434280>
16. Feyereisen M., Nichols J., Oddershede J., Simons J.: J. Chem. Phys. 1992, 96, 2978. <https://doi.org/10.1063/1.461995>
17. See, for example: Ortiz J. V., Leszczynski J. (Eds): Computational Chemistry: Reviews of Current Trends, Vol. 2, p. 1. World Scientific, Singapore 1997.
18a. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., H. Nakatsuji, Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian, Inc., Pittsburgh (PA) 2003.
18b. Ortiz J. V.: Adv. Quantum Chem. 1999, 35, 33. <https://doi.org/10.1016/S0065-3276(08)60454-2>
18c. Propagating insight: A tribute to the works of Öhrn Y., Ortiz J. V., Kurtz H. A. (Eds): Adv. Quantum Chem. 35, Academic Press, New York 1999.
19. Morrel M. M., Parr R. G., Levy M.: J. Chem. Phys. 1975, 62, 549. <https://doi.org/10.1063/1.430509>
20a. Day O. W., Smith D. W., Garrod C.: Int. J. Quantum Chem., Quantum Chem. Symp. 1974, 8, 501. <https://doi.org/10.1002/qua.560080855>
20b. Smith D. W., Day O. W.: J. Chem. Phys. 1975, 62, 113. <https://doi.org/10.1063/1.430253>
21. Andersen E., Simons J.: J. Chem. Phys. 1977, 66, 1067. <https://doi.org/10.1063/1.434063>
22. Cioslowski J., Piskorz P., Liu G.: J. Chem. Phys. 1997, 107, 6804. <https://doi.org/10.1063/1.474921>
23. Katriel J., Davidson E. R.: Proc. Natl. Acad. Sci. 1980, 77, 4403. <https://doi.org/10.1073/pnas.77.8.4403>
24a. Paldus J.: Proceedings of the Fourth International Congress of Quantum Chemistry, p. 31. D. Reidel, Dordrecht 1983.
24b. Čížek J., Paldus J.: Int. J. Quantum Chem. 1971, 5, 359. <https://doi.org/10.1002/qua.560050402>
25a. Monkhorst H. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
25b. The framework for applying EOM-CC theory to EAs was developed in: Nooijen M., Bartlett R. J.: J. Chem. Phys. 1995, 102, 3629. <https://doi.org/10.1063/1.468592>
25c. The use of CC wave functions and EOM-type theories to compute excitation energies was advanced by several workers including the following: Mukhopadhyay D., Mukhopadhyay S., Chaudhuri R., Mukherjee D.: Theor. Chim. Acta 1991, 80, 441. <https://doi.org/10.1007/BF01119665>
25d. Stanton J. F., Bartlett R. J.: J. Chem. Phys. 1993, 98, 7029. <https://doi.org/10.1063/1.464746>
25e. Piecuch P., Kowalski K. in: Computational Chemistry: Reviews of Current Trends (J. Leszczynski, Ed.), Vol. 5, p. 1. World Scientific, Singapore 2000. A special focus on implementing CC-based theories for electron affinities and ionization potentials was made by Nooijen in the following: f) Nooijen M.: Ph.D. Thesis. Vrije Universiteit Amsterdam, Amsterdam 1992.
25g. Nooijen M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6449. <https://doi.org/10.1063/1.473635>
25h. Stanton J. F., Gauss J.: J. Chem. Phys. 1994, 101, 8938. <https://doi.org/10.1063/1.468022>
26. A good overview is given in Bartlett R. J., Stanton J. F. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), Vol. 5. VCH, New York 1994.
27. Hazi A. U., Taylor H. S.: Phys. Rev. A: At., Mol., Opt. Phys. 1970, 1, 1109. <https://doi.org/10.1103/PhysRevA.1.1109>
28a. Simons J.: J. Chem. Phys. 1981, 75, 2465. <https://doi.org/10.1063/1.442271>
28b. Frey R. F., Simons J.: J. Chem. Phys. 1986, 84, 4462. <https://doi.org/10.1063/1.450017>
29a. Simons J., Skurski P.: Recent Res. Devel. Phys. Chem., Theoretical Prospect of Negative Ions (J. Kalcher, Ed.), 2002, 117.
29b. Encyclopedia of mass spectrometry, Vol. 5. Theory and Ion Chemistry 2. Theory (Energies and Potential Energy Surfaces). Anions, Simons J., 2002, 55.
29c. Gutowski M., Skurski P., Jordan K. D., Simons J.: Int. J. Quantum Chem. 1997, 64, 183. <https://doi.org/10.1002/(SICI)1097-461X(1997)64:2<183::AID-QUA5>3.0.CO;2-S>
29d. Simons J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1982, 16, 575.
29e. Simons J.: Theoretical Chemistry: Advances and Perspectives, Vol. 3. Academic Press, New York 1978.