Collect. Czech. Chem. Commun.
2005, 70, 539-549
https://doi.org/10.1135/cccc20050539
The Site of Action of General Anesthetics - A Chemical Approach
Camille Sandorfy
Département de chimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
References
1. Int. Rev. Neurobiol. 1985, 27, 1.
< K. W.: https://doi.org/10.1016/S0074-7742(08)60555-3>
2. Prog. Anesth. Mech. Jpn. Special Issue 2000, 6, 207.
I., Matsuki H., Kaminoh Y., Kaneshina S., Kamaya H.:
3. Nature 1994, 367, 607.
< N. P., Lieb R. R.: https://doi.org/10.1038/367607a0>
4. Top. Curr. Chem. 1980, 93, 91.
< G., Dumas M., Dupuis P., Guérin M., Sandorfy C.: https://doi.org/10.1007/3-540-10058-X_9>
5. Biophys. Chem. 1985, 22, 249.
< R., Sandorfy C.: https://doi.org/10.1016/0301-4622(85)80047-8>
6. Urry D. W., Sandorfy C. in: Drugs and Anesthetic Effects on Membrane Structure and Function (R. C. Alois, C. C. Curtain and L. M. Gordon, Eds), p. 91. Wiley–Liss, New York 1991.
7. Prog. Anesth. Mech. Jpn. Special Issue 1995, 3, 457.
C.:
8. Prog. Anesth. Mech. Jpn. Special Issue, 2000,6, 34.
C.:
9. Eur. J. Anaesth. 1995, 12, 5.
C. D.:
10. Cell Mol. Life Sci. 1999, 55, 1278.
< M. D., Harrison N. L.: https://doi.org/10.1007/s000180050371>
11. Trends Pharmacol. Sci. 1999, 20, 496.
< D., Pistis M., Peters J. A., Lambert J. J.: https://doi.org/10.1016/S0165-6147(99)01405-4>
12. Br. J. Anaesth. 1993, 71, 134.
< G., Richards C. D.: https://doi.org/10.1093/bja/71.1.134>
13. Nature 1997, 389, 385.
< S. J., Ye Q., Wick M. J., Kotchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P., Harris R. A., Harrison N. L.: https://doi.org/10.1038/38738>
14. Br. J. Anaesth. 2002, 89, 167.
< B. W.: https://doi.org/10.1093/bja/aef165>
15. Br. J. Anaesth. 2002, 89, 32.
< J. R., Bertaccini E.: https://doi.org/10.1093/bja/aef157>
16. Zahradník R., Hobza P.: Weak Intermolecular Interactions in Chemistry and Biology. Academia, Prague 1980.
17. Br. J. Anaesth. 1957, 29, 466.
< C. W.: https://doi.org/10.1093/bja/29.10.466>
18. Int. J. Quantum Chem., Quantum Biol. Symp. 1976 3, 171.
R. H., Bagnall R. D., Bell W., Jones W. G. M.:
19. Fluorine Chem. Rev. 1969, 3, 1.
E. R.:
20. J. Physiol. (London) 1986, 373, 311.
< D. A., Urban B. W.: https://doi.org/10.1113/jphysiol.1986.sp016049>
21. J. Am. Chem. Soc. 1981, 103, 136.
< P., Mulder F., Sandorfy C.: https://doi.org/10.1021/ja00396a011>
22. J. Am. Chem. Soc. 1982, 104, 925.
< P., Mulder F., Sandorfy C.: https://doi.org/10.1021/ja00368a001>
23. Nature 1974, 252, 471.
< T., Sandorfy C.: https://doi.org/10.1038/252471a0>
24. J. Med. Chem. 1974, 17, 809.
< T., Sandorfy C.: https://doi.org/10.1021/jm00254a006>
25. Can. J. Chem. 1978, 56, 1681.
< G., Cole K. C., Massuda R., Sandorfy C.: https://doi.org/10.1139/v78-273>
26. Desiraju G. R., Steiner T.: The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford 1999.
27. Jeffrey G. A., Saenger W.: Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin 1991.
28. Jeffrey G. A.: An Introduction to Hydrogen Bonding. Oxford University Press, Oxford 1997.
29. Scheiner S.: Hydrogen Bonding. A Theoretical Perspective. Oxford University Press, Oxford 1997.
30. Nature 1962, 195, 68.
< D. J.: https://doi.org/10.1038/195068a0>
31. J. Chem. Soc. 1963, 1105.
< D. J.: https://doi.org/10.1039/jr9630001105>
32. J. Am. Chem. Soc. 1963, 85, 1715.
< R., Schleyer P. v. R.: https://doi.org/10.1021/ja00895a002>
33. Green R. D.: Hydrogen Bonding by C–H Groups. Macmillan, London 1974.
34. J. Am. Chem. Soc. 1982, 104, 5063.
< R., Kennard O.: https://doi.org/10.1021/ja00383a012>
35. Acc. Chem. Res. 1991, 24, 270.
< G. R.: https://doi.org/10.1021/ar00010a002>
36. J. Chem. Soc., Perkin Trans. 1995, 2, 1315.
< T.: https://doi.org/10.1039/p29950001315>
37. J. Phys. Chem. 1994, 98, 8858.
< C., Ruiz de Azua M. C., Giribet C. G., Contreras R. H., Turi L., Dannenberg J. J., Rae I. D., Weingold J. A., Malagoli M., Zanasi R., Lazzeretti P.: https://doi.org/10.1021/j100087a007>
38. J. Chem. Soc., Faraday Trans. 1996, 92, 3029.
< C. G., Vizioli C. V., Ruiz de Azua M. C., Contreras R. H., Dannenberg J. J., Masunov A.: https://doi.org/10.1039/ft9969203029>
39. Chem. Rev. 2000, 100, 4253.
< P., Havlas Z.: https://doi.org/10.1021/cr990050q>
40. J. Am. Chem. Soc. 2002, 124, 7490.
< S. N., Herrebout W. A., van den Veken B. J.: https://doi.org/10.1021/ja0125220>
41. J. Am. Chem. Soc. 2002, 124, 11854.
< S. N., Herrebout W. A., van der Veken B. J.: https://doi.org/10.1021/ja027610e>
42. J. Phys. Chem. A 2002, 106, 6832.
< E. S., Zeegers-Huyskens T.: https://doi.org/10.1021/jp020426v>
43. J. Am. Chem. Soc. 1993, 115, 4540.
< T., Saenger W.: https://doi.org/10.1021/ja00064a016>
44. J. Org. Chem. 1936, 1, 405.
< M. L.: https://doi.org/10.1021/jo01234a001>
45. J. Am. Chem. Soc. 1951, 73, 405.
M. L., Badger R. M.:
46. Josien M. L., Sourisseau G. in: Hydrogen Bonding (D. Hadži, Ed.), p. 120. Pergamon Press, New York 1959.
47. Bull. Soc. Chim. Fr. 1956, 23, 937.
M. L., Saumagne P.:
48. J. Mol. Biol. 1988, 201, 751.
< M., Perutz M. F.: https://doi.org/10.1016/0022-2836(88)90471-8>
49. Phil. Trans Roy. Soc. London, Ser. A 1993, 345, 105.
< M. F.: https://doi.org/10.1098/rsta.1993.0122>
50. Trends Biochem. Sci. 1997, 22, 97.
< M., Sundaralingam M.: https://doi.org/10.1016/S0968-0004(97)01004-9>
51. Science 1985, 229, 23.
< S. K., Petsko G. A.: https://doi.org/10.1126/science.3892686>
52. FEBS Lett. 1986, 2003, 139.
< S. K., Petsko G. A.: https://doi.org/10.1016/0014-5793(86)80730-X>
53. J. Mol. Biol. 2001, 305, 535.
< T., Koellner G.: https://doi.org/10.1006/jmbi.2000.4301>
54. Acc. Chem. Res. 1996, 29, 373.
< R. U.: https://doi.org/10.1021/ar9600087>
55. Nature 1991, 349, 683.
< J. L., Hamada F., Robinson K. D., Orr G. W., Vincent R. L.: https://doi.org/10.1038/349683a0>
56. J. Am. Chem. Soc. 1994, 116, 4495.
< S., Gomtsyan A., Simard M., Roelens S.: https://doi.org/10.1021/ja00089a056>
57. Chem. Eur. J. 1997, 3, 1400.
< I., Egli M.: https://doi.org/10.1002/chem.19970030905>
58. Kiessling L. L., Young T., Mortell K. H. in: Glycoscience-Chemistry and Chemical Biology (B. Fraser-Reid, K. Tatsuta and J. Thiem, Eds), p. 1817. Springer-Verlag, Berlin 2001.
59. Annu. Rev. Biochem. 1996, 65, 441.
< W. I., Drickamer K.: https://doi.org/10.1146/annurev.bi.65.070196.002301>
60. Sandorfy C. in: Molecular and Basic Mechanisms of Anesthesia (B. W. Urban and M. Barann, Eds), p. 66. Pabst Science Publishers, Lengerich 2002.
61. Gurd J. W. in: Neurobiology of Glyconjugates (R. U. Margolis and R. K. Margolis, Eds), p. 219. Plenum Press, New York 1989.
62. J. Cell Biol. 1967, 32, 27.
< A., Leblond C. P.: https://doi.org/10.1083/jcb.32.1.27>
63. Prog. Histochem. Cytochem. 1973, 5, 1.
< K. H.: https://doi.org/10.1016/S0079-6336(73)80009-9>
64. Chem. Rev. 1998, 98, 637.
< H., Sharon N.: https://doi.org/10.1021/cr940413g>
65. Biochim. Biophys. Acta 1981, 670, 393.
< J. P., Reeber A., Vincendon G.: https://doi.org/10.1016/0005-2795(81)90112-4>
66. Sharon N., Lis H.: Lectins, 2nd ed. Kluwer Academic Publishers, Dordrecht 2003.
67. Margolis R. K., Margolis R. U. (Eds): Neurobiology of Glyconjugates, p. 85. Plenum Press, New York 1989.
68. Carlson S. S. in: Neurobiology of Glycoconjugates (R. U. Margolis and R. K. Margolis, Eds), p. 309. Plenum Press, New York 1989.
69. Annu. Rev. Biochem. 1986, 55, 287.
< F. A.: https://doi.org/10.1146/annurev.bi.55.070186.001443>
70. Quiocho F. A. in: Carbohydrate–Protein Interaction (E. Clarke and A. Wilson, Eds), p. 135. Springer-Verlag, Berlin 1988.
71. Johnson L. N., Cheetham J., McLaughlin P. J., Achary K. R., Barford D., Phillips D. C. in: Carbohydrate–Protein Interaction (A. E. Clarke and I. A. Wilson, Eds), p. 81. Springer-Verlag, Berlin 1988.
72. J. Biol. Chem. 1996, 271, 15521.
< R. G.: https://doi.org/10.1074/jbc.271.26.15521>
73. Mol. Pharmacol. 1998, 54, 610.
R. G.:
74. Pharmacol. Rev. 1997, 47, 343.
R. G., Johansson J. S.:
75. Anesthesiology 1995, 83, 316.
< J. S., Eckenhoff R. G., Dutton P. L.: https://doi.org/10.1097/00000542-199508000-00012>
76. Biophys. J. 2000, 78, 982.
< J. S., Sharf D., Davies L. A., Reddy K. S., Eckenhoff R. G.: https://doi.org/10.1016/S0006-3495(00)76656-2>
77. Biochemistry 2002, 41, 4080.
< G. A., Johansson J. S.: https://doi.org/10.1021/bi0160718>
78. Ann. N.Y. Acad. Sci. 1998, 845, 11.
R. W.:
79. Ann. N.Y. Acad. Sci. 1998, 845, 72.
< H., Jonas U., Kappel T., Hildebrandt H.: https://doi.org/10.1111/j.1749-6632.1998.tb09663.x>
80. Ann. N.Y. Acad. Sci. 1998, 845, 1.
< S. I., Yamamura S., Handa K.: https://doi.org/10.1111/j.1749-6632.1998.tb09657.x>
81. Ann. N.Y. Acad. Sci. 1998, 845, 161.
< R. W., Wu G., Lu Z. H., Kozireski-Chuback D., Fang Y.: https://doi.org/10.1111/j.1749-6632.1998.tb09669.x>
82. Biochim. Biophys. Acta 1976, 455, 433.
< I.: https://doi.org/10.1016/0005-2736(76)90316-3>
83. Chem. Phys. Lipids 1977, 20, 175.
< I., Sundell S.: https://doi.org/10.1016/0009-3084(77)90033-0>
84. J. Mol. Recogn. 1989, 2, 103.
< P. G., Samuelsson B. E., Breimer M., Pascher I.: https://doi.org/10.1002/jmr.300020302>
85. Chem. Phys. Lipids 1990, 52, 1.
< P. G., Pascher I., Sundell S.: https://doi.org/10.1016/0009-3084(90)90002-9>
86. Chem. Phys. Lipids 1977, 20, 273.
< H., Pascher I.: https://doi.org/10.1016/0009-3084(77)90068-8>
87. Glycobiology 1992, 2, 25.
< A.: https://doi.org/10.1093/glycob/2.1.25>
88. Glycobiology 1993, 3, 201.
< Y., Bignon J., Lambré C. R.: https://doi.org/10.1093/glycob/3.3.201>
89. Science 1999, 284, 1372.
< O. T., Hinderlich S., Landner J., Schwartz-Albiez R., Reutter W., Pawlita M.: https://doi.org/10.1126/science.284.5418.1372>
90. J. Biol. Chem. 1998, 273, 19146.
< C., Stehling P., Schnitzer J., Reutter W., Horstkorte R.: https://doi.org/10.1074/jbc.273.30.19146>