Collect. Czech. Chem. Commun. 2004, 69, 1325-1344
https://doi.org/10.1135/cccc20041325

Concave Reagents. New 2'-Substituted m-Terphenyls

Michael Abbassa, Christine Kühlb, Christian Mantheyc, Anja Müllerd and Ulrich Lüninge,*

a ChemCon GmbH, Engesserstrasse 4b, D-79108 Freiburg, Germany
b Bernina Biosystems GmbH, Am Klopferspitz 19a, D-82152 Martinsried, Germany
c ipal Gesellschaft für Patentverwertung Berlin mbH, Bundesallee 210, D-10719 Berlin, Germany
d Gilson International BV, Otto-Hahn-Str. 17, D-65520 Bad Camberg, Germany
e Institut für Organische Chemie, Olshausenstr. 3/4, D-24098 Kiel, Germany

References

1. Part 41 of the series Concave Reagents: Lüning U., Fahrenkrug F.: Eur. J. Org. Chem. 2004, in press.
2. Berg J. M., Tymoczko J. L., Stryer L.: Biochemie. Spektrum, Heidelberg, Berlin 2003.
3. Lehn J.-M.: Supramolecular Chemistry. VCH, Weinheim 1995.
4. Atwood J. L. (Ed.): Comprehensive Supramolecular Chemistry. Pergamon, Oxford 1996.
5. Steed J. W., Atwood J. L.: Supramolecular Chemistry. John Wiley, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto 2000.
6. Lüning U.: Concave Reagents, in Encyclopedia of Supramolecular Chemistry. Marcel Dekker, New York, in press.
7. Lüning U.: J. Mater. Chem. 1997, 7, 175. <https://doi.org/10.1039/a603773i>
8. Dudič M., Lhoták P., Petříčková H., Stibor I., Lang K., Sýkora J.: Tetrahedron 2003, 59, 2409. <https://doi.org/10.1016/S0040-4020(03)00290-4>
9. Shinkai S., Nakaji T., Ogawa T., Shigematsu K., Manabe O.: J. Am. Chem. Soc. 1981, 103, 111. <https://doi.org/10.1021/ja00391a021>
10. Irie M., Kato M.: J. Am. Chem. Soc. 1985, 107, 1024. <https://doi.org/10.1021/ja00290a045>
11a. Schrader T., Jasper C., Panitzky J., Klärner F.-G.: Angew. Chem. 2002, 114, 1411.
11b. Schrader T., Jasper C., Panitzky J., Klärner F.-G.: Angew. Chem., Int. Ed. 2002, 41, 1355, and references therein.
12. Klärner F.-G., Kahlert B.: Acc. Chem. Res. 2003, 36, 919. <https://doi.org/10.1021/ar0200448>
13. Potluri V. K., Maitra U.: J. Org. Chem. 2000, 65, 7764; and references therein. <https://doi.org/10.1021/jo000704r>
14. Reek J. N. H., Elemans J. A. A. W., Nolte R. J. M.: J. Org. Chem. 1997, 62, 2234; and references therein. <https://doi.org/10.1021/jo961382n>
15. Zimmerman S. C.: Top. Curr. Chem. 1993, 165, 71; and references therein. <https://doi.org/10.1007/BFb0111281>
16. Goto K., Shimada K., Nagahama M., Okazaki R., Kawashima T.: Chem. Lett. 2003, 32, 1080; and references therein. <https://doi.org/10.1246/cl.2003.1080>
17. Du C.-J. F., Hart H., Ng K.-K. D.: J. Org. Chem. 1986, 51, 3162. <https://doi.org/10.1021/jo00366a016>
18. Hart H., Vinod T. K.: Top. Curr. Chem. 1994, 172, 119.
19. Lüning U., Wangnick C., Peters K., v. Schnering H. G.: Chem. Ber. 1991, 124, 397. <https://doi.org/10.1002/cber.19911240225>
20. Lüning U., Wangnick C.: Liebigs Ann. Chem. 1992, 481. <https://doi.org/10.1002/jlac.199219920185>
21. Lüning U., Baumgartner H.: Synlett 1993, 571. <https://doi.org/10.1055/s-1993-22532>
22. Lüning U., Baumgartner H., Wangnick C.: Tetrahedron 1996, 52, 599. <https://doi.org/10.1016/0040-4020(95)00908-6>
23. Lüning U., Baumgartner H., Manthey C., Meynhardt B.: J. Org. Chem. 1996, 61, 7922. <https://doi.org/10.1021/jo961094r>
24. Miyaji H., Dudič M., Tucker J. H. R., Prokeš I., Light M. E., Gelbrich T., Hursthouse M. B., Stibor I., Lhoták P., Brammer L.: Supramol. Chem. 2003, 15, 385. <https://doi.org/10.1080/1061027031000115994>
25. Bould J., Brisdon B. J.: Inorg. Chim. Acta 1976, 19, 159. <https://doi.org/10.1016/S0020-1693(00)91089-2>
26. Sudha L. V., Manogaran S., Sathyanarayana D. N.: J. Mol. Struct. 1985, 129, 137. <https://doi.org/10.1016/0022-2860(85)80199-X>
27. Turner J. A.: J. Org. Chem. 1983, 48, 3401. <https://doi.org/10.1021/jo00168a007>
28. Miyaji H., Dudič M., Tucker J. H. R., Prokeš I., Light M. E., Hursthouse M. B., Stibor I., Lhoták P.: Tetrahedron Lett. 2002, 43, 873. <https://doi.org/10.1016/S0040-4039(01)02179-7>
29. Chen C.-T., Siegel J. S.: J. Am. Chem. Soc. 1994, 116, 5959. <https://doi.org/10.1021/ja00092a053>
30. Manthey C.: Ph.D. Thesis. Christian-Albrechts-Universität zu Kiel, Kiel 1998.
31. Karger L., Stern R. L., Zanucci J. F.: Anal. Chem. 1968, 40, 727. <https://doi.org/10.1021/ac60260a043>
32. Rupe H.: Justus Liebigs Ann. Chem. 1909, 311. <https://doi.org/10.1002/jlac.19093690306>
33a. Kún C.: Zh. Obshch. Khim. 1961, 31, 1554.
33b. Kún C.: J. Gen. Chem. U.S.S.R. (Engl. Transl.) 1961, 31, 1442.
34. Lüning U. in: Molecular Recognition and Inclusion (A. W. Coleman, Ed.), p. 203. Kluwer Academic Publishers, Dordrecht 1998.
35. Maskill H.: The Physical Basis of Organic Chemistry. Oxford University Press, New York 1993.
36. Lüning U., Wangnick C., Kümmerlin M.: Chem. Ber. 1994, 127, 2431. <https://doi.org/10.1002/cber.19941271214>
37. Hawkins R. T., Lennarz W. J., Snyder H. R.: J. Am. Chem. Soc. 1960, 82, 3053. <https://doi.org/10.1021/ja01497a020>
38. Lüning U., Müller M.: Liebigs Ann. Chem. 1989, 367. <https://doi.org/10.1002/jlac.198919890163>
39. Lüning U., Baumstark R., Peters K., v. Schnering H. G.: Liebigs Ann. Chem. 1990, 129. <https://doi.org/10.1002/jlac.199019900124>
40. Ng K.-M. E., McMorris T. C.: Can. J. Chem. 1984, 62, 1945. <https://doi.org/10.1139/v84-334>
41. Brink M.: Synthesis 1975, 807. <https://doi.org/10.1055/s-1975-23940>
42. Newton A.: J. Am. Chem. Soc. 1943, 65, 2441. <https://doi.org/10.1021/ja01252a061>
43. Bolton R., Sandall J. B. P.: J. Chem. Soc., Perkin Trans. 2 1977, 278. <https://doi.org/10.1039/p29770000278>
44a. Schiemenz B., Power P. P.: Angew. Chem. 1996, 108, 2288. <https://doi.org/10.1002/ange.19961081833>
44b. Schiemenz B., Power P. P.: Angew. Chem., Int. Ed. Engl. 1996, 35, 2150. <https://doi.org/10.1002/anie.199621501>
45. Field J. E., Hill T. J., Venkataraman D.: J. Org. Chem. 2003, 68, 6071. <https://doi.org/10.1021/jo026883p>
46. Tashiro M., Yamato T.: J. Chem. Soc., Perkin Trans. 1 1979, 176. <https://doi.org/10.1039/p19790000176>