Collect. Czech. Chem. Commun.
2004, 69, 1325-1344
https://doi.org/10.1135/cccc20041325
Concave Reagents. New 2'-Substituted m-Terphenyls
Michael Abbassa, Christine Kühlb, Christian Mantheyc, Anja Müllerd and Ulrich Lüninge,*
a ChemCon GmbH, Engesserstrasse 4b, D-79108 Freiburg, Germany
b Bernina Biosystems GmbH, Am Klopferspitz 19a, D-82152 Martinsried, Germany
c ipal Gesellschaft für Patentverwertung Berlin mbH, Bundesallee 210, D-10719 Berlin, Germany
d Gilson International BV, Otto-Hahn-Str. 17, D-65520 Bad Camberg, Germany
e Institut für Organische Chemie, Olshausenstr. 3/4, D-24098 Kiel, Germany
References
1. Part 41 of the series Concave Reagents: Lüning U., Fahrenkrug F.: Eur. J. Org. Chem. 2004, in press.
2. Berg J. M., Tymoczko J. L., Stryer L.: Biochemie. Spektrum, Heidelberg, Berlin 2003.
3. Lehn J.-M.: Supramolecular Chemistry. VCH, Weinheim 1995.
4. Atwood J. L. (Ed.): Comprehensive Supramolecular Chemistry. Pergamon, Oxford 1996.
5. Steed J. W., Atwood J. L.: Supramolecular Chemistry. John Wiley, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto 2000.
6. Lüning U.: Concave Reagents, in Encyclopedia of Supramolecular Chemistry. Marcel Dekker, New York, in press.
7. J. Mater. Chem. 1997, 7, 175.
< U.: https://doi.org/10.1039/a603773i>
8. Tetrahedron 2003, 59, 2409.
< M., Lhoták P., Petříčková H., Stibor I., Lang K., Sýkora J.: https://doi.org/10.1016/S0040-4020(03)00290-4>
9. J. Am. Chem. Soc. 1981, 103, 111.
< S., Nakaji T., Ogawa T., Shigematsu K., Manabe O.: https://doi.org/10.1021/ja00391a021>
10. J. Am. Chem. Soc. 1985, 107, 1024.
< M., Kato M.: https://doi.org/10.1021/ja00290a045>
11a. Angew. Chem. 2002, 114, 1411.
T., Jasper C., Panitzky J., Klärner F.-G.:
11b. Angew. Chem., Int. Ed. 2002, 41, 1355, and references therein.
T., Jasper C., Panitzky J., Klärner F.-G.:
12. Acc. Chem. Res. 2003, 36, 919.
< F.-G., Kahlert B.: https://doi.org/10.1021/ar0200448>
13. J. Org. Chem. 2000, 65, 7764; and references therein.
< V. K., Maitra U.: https://doi.org/10.1021/jo000704r>
14. J. Org. Chem. 1997, 62, 2234; and references therein.
< J. N. H., Elemans J. A. A. W., Nolte R. J. M.: https://doi.org/10.1021/jo961382n>
15. Top. Curr. Chem. 1993, 165, 71; and references therein.
< S. C.: https://doi.org/10.1007/BFb0111281>
16. Chem. Lett. 2003, 32, 1080; and references therein.
< K., Shimada K., Nagahama M., Okazaki R., Kawashima T.: https://doi.org/10.1246/cl.2003.1080>
17. J. Org. Chem. 1986, 51, 3162.
< C.-J. F., Hart H., Ng K.-K. D.: https://doi.org/10.1021/jo00366a016>
18. Top. Curr. Chem. 1994, 172, 119.
H., Vinod T. K.:
19. Chem. Ber. 1991, 124, 397.
< U., Wangnick C., Peters K., v. Schnering H. G.: https://doi.org/10.1002/cber.19911240225>
20. Liebigs Ann. Chem. 1992, 481.
< U., Wangnick C.: https://doi.org/10.1002/jlac.199219920185>
21. Synlett 1993, 571.
< U., Baumgartner H.: https://doi.org/10.1055/s-1993-22532>
22. Tetrahedron 1996, 52, 599.
< U., Baumgartner H., Wangnick C.: https://doi.org/10.1016/0040-4020(95)00908-6>
23. J. Org. Chem. 1996, 61, 7922.
< U., Baumgartner H., Manthey C., Meynhardt B.: https://doi.org/10.1021/jo961094r>
24. Supramol. Chem. 2003, 15, 385.
< H., Dudič M., Tucker J. H. R., Prokeš I., Light M. E., Gelbrich T., Hursthouse M. B., Stibor I., Lhoták P., Brammer L.: https://doi.org/10.1080/1061027031000115994>
25. Inorg. Chim. Acta 1976, 19, 159.
< J., Brisdon B. J.: https://doi.org/10.1016/S0020-1693(00)91089-2>
26. J. Mol. Struct. 1985, 129, 137.
< L. V., Manogaran S., Sathyanarayana D. N.: https://doi.org/10.1016/0022-2860(85)80199-X>
27. J. Org. Chem. 1983, 48, 3401.
< J. A.: https://doi.org/10.1021/jo00168a007>
28. Tetrahedron Lett. 2002, 43, 873.
< H., Dudič M., Tucker J. H. R., Prokeš I., Light M. E., Hursthouse M. B., Stibor I., Lhoták P.: https://doi.org/10.1016/S0040-4039(01)02179-7>
29. J. Am. Chem. Soc. 1994, 116, 5959.
< C.-T., Siegel J. S.: https://doi.org/10.1021/ja00092a053>
30. Manthey C.: Ph.D. Thesis. Christian-Albrechts-Universität zu Kiel, Kiel 1998.
31. Anal. Chem. 1968, 40, 727.
< L., Stern R. L., Zanucci J. F.: https://doi.org/10.1021/ac60260a043>
32. Justus Liebigs Ann. Chem. 1909, 311.
< H.: https://doi.org/10.1002/jlac.19093690306>
33a. Zh. Obshch. Khim. 1961, 31, 1554.
C.:
33b. J. Gen. Chem. U.S.S.R. (Engl. Transl.) 1961, 31, 1442.
C.:
34. Lüning U. in: Molecular Recognition and Inclusion (A. W. Coleman, Ed.), p. 203. Kluwer Academic Publishers, Dordrecht 1998.
35. Maskill H.: The Physical Basis of Organic Chemistry. Oxford University Press, New York 1993.
36. Chem. Ber. 1994, 127, 2431.
< U., Wangnick C., Kümmerlin M.: https://doi.org/10.1002/cber.19941271214>
37. J. Am. Chem. Soc. 1960, 82, 3053.
< R. T., Lennarz W. J., Snyder H. R.: https://doi.org/10.1021/ja01497a020>
38. Liebigs Ann. Chem. 1989, 367.
< U., Müller M.: https://doi.org/10.1002/jlac.198919890163>
39. Liebigs Ann. Chem. 1990, 129.
< U., Baumstark R., Peters K., v. Schnering H. G.: https://doi.org/10.1002/jlac.199019900124>
40. Can. J. Chem. 1984, 62, 1945.
< K.-M. E., McMorris T. C.: https://doi.org/10.1139/v84-334>
41. Synthesis 1975, 807.
< M.: https://doi.org/10.1055/s-1975-23940>
42. J. Am. Chem. Soc. 1943, 65, 2441.
< A.: https://doi.org/10.1021/ja01252a061>
43. J. Chem. Soc., Perkin Trans. 2 1977, 278.
< R., Sandall J. B. P.: https://doi.org/10.1039/p29770000278>
44a. Angew. Chem. 1996, 108, 2288.
< B., Power P. P.: https://doi.org/10.1002/ange.19961081833>
44b. Angew. Chem., Int. Ed. Engl. 1996, 35, 2150.
< B., Power P. P.: https://doi.org/10.1002/anie.199621501>
45. J. Org. Chem. 2003, 68, 6071.
< J. E., Hill T. J., Venkataraman D.: https://doi.org/10.1021/jo026883p>
46. J. Chem. Soc., Perkin Trans. 1 1979, 176.
< M., Yamato T.: https://doi.org/10.1039/p19790000176>