Collect. Czech. Chem. Commun. 2004, 69, 1009-1026
https://doi.org/10.1135/cccc20041009

Selective Derivatization of Calix[4]arenes via Amino Groups Attached to the Wide Rim

Anca Bogdan, Myroslav O. Vysotsky and Volker Böhmer*

Fachbereich Chemie und Pharmazie, Abteilung Lehramt Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany

References

1. Asfari Z., Böhmer V., Harrowfield J., Vicens J. (Eds): Calixarenes 2001. Kluwer, Dordrecht 2001.
2a. Gutsche C. D., Iqbal M.: Org. Synth. 1990, 68, 234.
2b. Gutsche C. D., Dhawan B., Leonis M., Stewart D.: Org. Synth. 1990, 68, 238.
2c. Munch J. H., Gutsche C. D.: Org. Synth. 1990, 68, 243.
3a. Thondorf I., Shivanyuk A., Böhmer V.: Chemical Modification of Calix[4]arenes and Resorcarenens in Calixarenes 2001 (Z. Asfari, V. Böhmer, J. Harrowfield and J. Vicens, Eds). Kluwer, Dordrecht 2001.
3b. van Loon J. D., Verboom W., Reinhoudt D. N.: Org. Prep. Proced. Int. 1992, 24, 437. <https://doi.org/10.1080/00304949209356227>
4a. Juneja R. K., Robinson K. D., Johnson C. P., Atwood J. L.: J. Am. Chem. Soc. 1993, 115, 3818. <https://doi.org/10.1021/ja00062a075>
4b. Isaacs N. S., Nichols P. J., Raston C. L., Sandoval C. A., Young D. J.: Chem. Commun. 1997, 1839. <https://doi.org/10.1039/a702200j>
5. Other functional groups frequently used are halogen (bromine, iodine) for cross-coupling reactions (Suzuki, Sonogashira), CH2OH (e.g. the attachement of saccharides) or COOH (attachment of peptides) usually obtained via formylation and subsequent reduction or oxidation.
6a. Jakobi R. A., Böhmer V., Grüttner C., Kraft D., Vogt W.: New J. Chem. 1996, 20, 493.
6b. Jaunky W., Hosseini M. W., Planiex J. M., De Cian A., Kyritsakas N., Fischer J.: Chem. Commun. 1999, 2313. <https://doi.org/10.1039/a906728k>
7a. Arnaud-Neu F., Böhmer V., Dozol J.-F., Grüttner C., Jakobi R. A., Kraft D., Mauprivez O., Rouquette H., Schwing-Weill M.-J., Simon N., Vogt W.: J. Chem. Soc., Perkin Trans. 2 1996, 1175. <https://doi.org/10.1039/p29960001175>
7b. Arduini A., Böhmer V., Delmau L., Desreux J. F., Dozol J. F., Garcia Carrera M. A., Lambert B., Musigman C., Pochini A., Shivanyuk A., Ugozzoli F.: Chem. Eur. J. 2000, 6, 2135. <https://doi.org/10.1002/1521-3765(20000616)6:12<2135::AID-CHEM2135>3.0.CO;2-A>
8a. Delmau L. H., Simon N., Schwing-Weill M.-J., Arnaud-Neu F., Dozol J.-F., Eymard S., Tournois B., Böhmer V., Grüttner C., Musigmann C., Tunayar A.: Chem. Commun. 1998, 1627. <https://doi.org/10.1039/a802555j>
8b. Delmau L. H., Simon N., Schwing-Weill M.-J., Arnaud-Neu F., Dozol J.-F., Eymard S., Tournois B., Grüttner C., Musigmann C., Tunayar A., Böhmer V.: Sep. Sci. Technol. 1999, 34, 863. <https://doi.org/10.1080/01496399908951071>
9. Mogck O., Böhmer V., Vogt W.: Tetrahedron 1996, 52, 8489. <https://doi.org/10.1016/0040-4020(96)00404-8>
10a. Pelizzi N., Casnati A., Friggeri A., Ungaro R.: J. Chem. Soc., Perkin Trans. 2 1998, 1307. <https://doi.org/10.1039/a801762j>
10b. Casnati A., Fochi M., Minari P., Pochini A., Reggiani M., Ungaro R., Reinhoudt D. N.: Gazz. Chim. Ital. 1996, 126, 99.
10c. Scheerder J., Vreekamp R. H., Engbersen J. F. J., Verboom W., van Duynhoven J. P. M., Reinhoudt D. N.: J. Org. Chem. 1996, 61, 3476. <https://doi.org/10.1021/jo9600262>
10d. van Wageningen A. M. A., Snip E., Verboom W., Reinhoudt D. N., Boerrigter H.: Liebigs Ann./Rec. 1997, 2235. <https://doi.org/10.1002/jlac.199719971110>
11a. Matthews S. E., Beer P. D.: Calixarene-Based Anion Receptors in Calixarenes 2001 (Z. Asfari, V. Böhmer, J. Harrowfield and J. Vicens, Eds). Kluwer, Dordrecht 2001.
11b. For a general review on hydrogen-bonding anion receptors see: Choi K. H., Hamilton A. D.: Coord. Chem. Rev. 2003, 240, 101. <https://doi.org/10.1016/S0010-8545(02)00305-3>
12a. Dudič M., Lhoták P., Stibor I., Lang K., Prošková P.: Org. Lett. 2003, 5, 149. <https://doi.org/10.1021/ol027175t>
12b. Casnati A., Massera C., Pelizzi N., Stibor I., Pinkassik E., Ugozzoli F., Ungaro R.: Tetrahedron Lett. 2002, 43, 7311. <https://doi.org/10.1016/S0040-4039(02)01748-3>
12c. Sansone F., Baldini L., Casnati A., Lazzarotto M., Ugozzoli F., Ungaro R.: Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4842. <https://doi.org/10.1073/pnas.062625499>
12d. Morzherin Y., Rudkevich D. M., Verboom W., Reinhoudt D. N.: J. Org. Chem. 1993, 58, 7602. <https://doi.org/10.1021/jo00078a052>
13a. Rebek J., Jr.: Chem. Commun. 2000, 637. <https://doi.org/10.1039/a910339m>
13b. Mogck O., Paulus E. F., Böhmer V., Thondorf I., Vogt W.: Chem. Commun. 1996, 2533. <https://doi.org/10.1039/cc9960002533>
13c. Vysotsky M. O., Thondorf I., Böhmer V.: Angew. Chem. 2000, 112, 1309. <https://doi.org/10.1002/(SICI)1521-3757(20000403)112:7<1309::AID-ANGE1309>3.0.CO;2-N>
13d. Vysotsky M. O., Thondorf I., Böhmer V.: Angew. Chem., Int. Ed. 2000, 39, 1264. <https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1264::AID-ANIE1264>3.0.CO;2-P>
14a. Pinkhassik E., Stibor I., Havlíček V.: Collect. Czech. Chem. Commun. 1996, 61, 1182. <https://doi.org/10.1135/cccc19961182>
14b. Brewster R. E., Shuker S. B.: J. Am. Chem. Soc. 2002, 124, 7902. <https://doi.org/10.1021/ja026084o>
14c. Rincon A. M., Prados P., de Mendoza J.: J. Am. Chem. Soc. 2001, 123, 3493. <https://doi.org/10.1021/ja0036054>
14d. Lazzarotto M., Sansone F., Baldini L., Casnati A., Cozzini P., Ungaro R.: Eur. J. Org. Chem. 2001, 595. <https://doi.org/10.1002/1099-0690(200102)2001:3<595::AID-EJOC595>3.0.CO;2-#>
15. Shuker S. B., Esterbrook J., Gonzalez J.: Synlett 2001, 210. <https://doi.org/10.1055/s-2001-10779>
16a. Sansone F., Chierici E., Casnati A., Ungaro R.: Org. Biomol. Chem. 2003, 1, 1802. <https://doi.org/10.1039/b301595e>
16b. Casnati A., Sansone F., Ungaro R.: Acc. Chem. Res. 2003, 36, 246. <https://doi.org/10.1021/ar0200798>
17. van Wageningen A. M. A., Timmerman P., van Duynhoven J. P. M., Verboom W., van Veggel F. C. J. M., Reinhoudt D. N.: Chem. Eur. J. 1997, 3, 639. <https://doi.org/10.1002/chem.19970030421>
18. Vysotsky M. O., Böhmer V., Würthner F., You C. C., Rissanen K.: Org. Lett. 2002, 4, 2901. <https://doi.org/10.1021/ol026402o>
19. Saadioui M., Shivanyuk A., Böhmer V., Vogt W.: J. Org. Chem. 1999, 64, 3774. <https://doi.org/10.1021/jo982524b>
20. The preparation of the calix[4]arene/fullerene conjugate involves a 1,3-diacylation: Soi A., Hirsch A.: New J. Chem. 1998, 1337. <https://doi.org/10.1039/a805959d>
21. Partial ipso-nitration has been described first by Verboom W., Durie A., Egberink R. J. M., Asfari Z., Reinhoudt D. N.: J. Org. Chem. 1992, 57, 1313 for the tetrapropyl ether. <https://doi.org/10.1021/jo00030a050>
22. Probably for tetraethers with different ether residues, optimum conditions have to be worked out for the partial ipso-nitration, while the further reactions should be more or less general.
23. Mogck O., Böhmer V., Ferguson G., Vogt W.: J. Chem. Soc., Perkin Trans. 1 1996, 1711. <https://doi.org/10.1039/p19960001711>
24. For partial CMPO-derivatives see: Arnaud-Neu F., Barboso S., Böhmer V., Brisach F., Delmau L., Dozol J.-F., Mogck O., Paulus E. F., Saadioui M., Shivanyuk A.: Aust. J. Chem. 2003, 56, 1113. <https://doi.org/10.1071/CH03163>
25. Verboom W., Bodewes P. J., van Essen G., Timmerman P., van Hummel G. J., Harkema S., Reinhoudt D. N.: Tetrahedron 1995, 51, 499. <https://doi.org/10.1016/0040-4020(94)00911-D>
26. Sharma S. K., Gutsche C. D.: J. Org. Chem. 1996, 61, 2564. <https://doi.org/10.1021/jo952013e>
27. Tetraurea derivatives with two different urea residues obtained by this method will be subject of a forthcoming article, see also: Pop A., Vysotsky M. O., Saadioui M., Böhmer V.: Chem. Commun. 2003, 1124. <https://doi.org/10.1039/b301418e>
28. This sequence was used during the synthesis of selectively functionalized 1,3-alternate calix[4]arenes: Danila C., Bolte M., Böhmer V.: Unpublished results.
29a. debutylation (66–75%).
29b. 1,3-di-O-alkylation (96%).
29c. selective nitration of the phenolic units (65%).
29d. 2,4-di-O-alkylation (98% in the case of methylation).
29e. iodination (at 2,4 position 93%).
29f. substitution with potassium phthalimide (70%); overall yield 26–29% versus: a) 1,3-di-O-alkylation (96%).
29b. selective ipso-nitration of the phenolic units (76%).
29c. 2,4-di-O-alkylation (98% in the case of methylation).
29d. reduction of nitro groups.
29e. formation of phthalimides (d + e 82–92%).
29f. ipso- nitration (78–92%) overall 45–60%.
30. For mononitro derivatives see: Mogck O., Parzuchowski P., Nissinen M., Böhmer V., Rokicki G., Rissanen K.: Tetrahedron 1998, 54, 10053; for a general method of ipso- nitration see24.