Collect. Czech. Chem. Commun. 2004, 69, 2147-2173
https://doi.org/10.1135/cccc20042147

Hydrogen Bonding Contribution to Lipophilicity Parameters. Hydrogen Acceptor and Hydrogen Acceptor Donor Parameters

Marvin Charton* and Barbara I. Charton

Chemical Department, Pratt Institute, Brooklyn, NY 11205, U.S.A.

References

1. Charton M. in: The Chemistry of Arsenic, Antimony and Bismuth (S. Patai, Ed.), pp. 367–439. Wiley, New York 1994.
2. Charton M., Charton B. I.: J. Org. Chem. 1979, 44, 2284. <https://doi.org/10.1021/jo01327a055>
3. Charton M. in: QSAR in Design of Bioactive Compounds (M. Kuchar, Ed.), pp. 41–51. J. R. Prous, Barcelona 1985.
4. Charton M. in: Rational Approaches to the Synthesis of Pesticides (P. S. Magee, J. J. Menn and G. K. Koan, Eds), pp. 247–278. American Chemical Society, Washington, D.C. 1984.
5. Charton M., Ziffer H.: J. Org. Chem. 1987, 52, 2400. <https://doi.org/10.1021/jo00388a012>
6. Kwei T. K., Pearce E. M., Pennacchia J. R., Charton M.: Macromolecules 1987, 20, 1174. <https://doi.org/10.1021/ma00171a055>
7. Charton M.: J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 1265. <https://doi.org/10.1002/pola.1988.080260501>
8a. Charton M. in: Trends in Medicinal Chemistry ′88 (H. van der Goot, G. Domany, L. Pallos and H. Timmerman, Eds), pp. 89–108. Elsevier, Amsterdam 1989.
8b. Charton M. in: Classical and 3-D QSAR in Agrochemistry and Toxicology (C. Hansch and T. Fujita, Eds), pp. 75–95. American Chemical Society, Washington, D.C. 1995.
8c. Charton M.: Adv. Quant. Struct. Prop. Relationships 2002, 3, 137. <https://doi.org/10.1016/S1874-527X(02)80007-X>
9. Charton M.: Prog. Phys. Org. Chem. 1990, 18, 163. <https://doi.org/10.1002/9780470171974.ch5>
10. Vinogradov S. M., Linnell R. H.: Hydrogen Bonding. Van Nostrand Reinhold, New York 1971.
11. Jeffrey G. J., Saenger W.: Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin 1991.
12. Hansch C., Dunn W. J.: J. Pharm. Sci. 1972, 61, 1. <https://doi.org/10.1002/jps.2600610102>
13. Seiler P.: Eur. J. Med. Chem. 1974, 9, 473.
14. Moriguchi I., Kanada Y., Katsuichiro K.: Chem. Pharm. Bull. 1976, 24, 1799. <https://doi.org/10.1248/cpb.24.1799>
15. Charton M., Charton B. I.: J. Theor. Biol. 1982, 99, 629. <https://doi.org/10.1016/0022-5193(82)90191-6>
16. Kamlet M. J., Abboud J. L. M., Taft R. W.: Prog. Phys. Org. Chem. 1981, 13, 485. <https://doi.org/10.1002/9780470171929.ch6>
17. Abraham M. H.: Chem. Soc. Rev. 1993, 22, 73. <https://doi.org/10.1039/cs9932200073>
18. Raevsky O. A.: Russ. Chem. Rev. 1999, 68, 505. <https://doi.org/10.1070/RC1999v068n06ABEH000425>
19. Laurence C., Berthelot M.: Perspect. Drug Discovery Des. 2000, 18, 39. <https://doi.org/10.1023/A:1008743229409>
20. El Tayar N., Testa B., Carrupt P. A.: J. Phys. Chem. 1992, 96, 1455. <https://doi.org/10.1021/j100182a078>
21. Rey S., Caron G., Ermondi G., Gaillard P., Pagliara A., Carrupt P. A., Testa B.: J. Mol. Graphics Mod. 2001, 19, 521. <https://doi.org/10.1016/S1093-3263(00)00105-4>
22. Charton M.: Stud. Org. Chem. 1992, 42, 629.