Collect. Czech. Chem. Commun. 2004, 69, 213-230
https://doi.org/10.1135/cccc20040213

Additivity of Absolute Entropies

Ivan Černušáka,*, Susan K. Gregurickb, Marjorie Roswellc, Carol A. Deakyned, H. Donald Brooke Jenkinse and Joel F. Liebmanb,*

a Department of Physical and Theoretical Chemistry, Faculty of Science, Comenius University, Mlynská dolina, SK-84215 Bratislava, Slovakia
b Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, U.S.A.
c Center for Health Program Development and Management, University of Maryland, Baltimore County, Baltimore, MD 21250, U.S.A.
d Department of Chemistry, University of Missouri - Columbia, Columbia, MO 62511-7600, U.S.A.
e Department of Chemistry, University of Warwick, Coventry, CV7 7GG, West Midlands, U.K.

References

1. Lide D. R. (Ed.): Handbook of Chemistry and Physics, 80th ed., Sect. 5-4–5-60. CRC Press, Boca Raton 1999–2000.
2a. Benson S. W.: Thermochemical Kinetics. Wiley–Interscience, New York 1976.
2b. See also for example: Benson S. W., Cruickshank F. R., Golden D. M., Haugen G. R., O’Neal H. E., Rodgers A. S., Shaw R., Walsh R.: Chem. Rev. 1969, 69, 269. <https://doi.org/10.1021/cr60259a002>
2c. Domalski E. S., Hearing E. D.: J. Phys. Chem. Ref. Data 1993, 22, 805. <https://doi.org/10.1063/1.555927>
3a. Pauling L.: Nature of the Chemical Bond, 2nd ed. Cornell University Press, Ithaca 1940.
3b. See also: Perks H. M., Liebman J. F.: Struct. Chem. 2000, 11, 375. <https://doi.org/10.1023/A:1026574122815>
3c. Smith D. W.: J. Phys. Chem. A 2002, 106, 5951. <https://doi.org/10.1021/jp012296g>
3d. Matsunaga N., Rogers D. W., Zavitsas A. J.: J. Org. Chem. 2003, 68, 3158. <https://doi.org/10.1021/jo020650g>
4. Hisham M. W. M., Benson S. W. in: From Atoms to Polymers: Isoelectronic Reasoning (J. F. Liebman and A. Greenberg, Eds). VCH Publishers, New York 1989.
5. Boldyrev A. I., Gonzales N., Simons J.: J. Phys. Chem. 1994, 98, 9931. <https://doi.org/10.1021/j100091a001>
6. The spin state logic in: Deakyne C. A., Brown K. K., Pacini C. S., Pohlman D. C., Gray D. N., Liebman J. F.: J. Mol. Struct. (THEOCHEM) 1992, 260, 395 suggests non 1Σ ground states for alkali metal trellides; our preliminary quantum chemical calculations for these species show unforeseen complications in the description of these diatomic molecules. <https://doi.org/10.1016/0166-1280(92)87056-6>
7. Chase M. W., Jr.: NIST-JANAF Thermochemical Tables, 4th ed.; J. Phys. Chem. Ref. Data Monograph 1998, 9.
8. Wagman D. D., Evans W. H., Parker V. B., Schumm R. H., Halow I., Bailey S. M., Churney K. L., Nuttall R. L.: The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units; J. Phys. Chem. Ref. Data 1982, 11, Suppl. 2.
9. Karapetyants M. Kh., Karapetyants M. Kh.: Handbook of Thermodynamic Constants of Inorganic and Organic Compounds. Ann Arbor–Humphrey Science Publishers, Ann Arbor 1970. Note, sometimes two values are given in this source. We have decided to adopt the arithmetic average of the two values.
10. Černušák I., Gregurick S. K., Roswell M., Deakyne C. A., Jenkins H. D. B., Liebman J. F.: Unpublished results based on our calculations using fourth-order many-body per- turbation theory (MBPT[4]) with the 6-311G** basis set. We have used the rigid rotor/ harmonic oscillator model for the evaluation of entropies.
11a. Balighian E. D., Liebman J. F.: J. Fluorine Chem. 2002, 116, 35. <https://doi.org/10.1016/S0022-1139(02)00069-6>
11b. See also the pioneering study: Politzer P.: J. Am. Chem. Soc. 1969, 91, 6235. <https://doi.org/10.1021/ja01051a006>
12. Waddington T. C.: Trans. Faraday Soc. 1966, 62, 1482. <https://doi.org/10.1039/tf9666201482>
13. Jenkins H. D. B., Pritchett M. S. F.: J. Chem. Soc., Faraday Trans. 1 1984, 80, 721. <https://doi.org/10.1039/f19848000721>
14. Our analysis could equally well be applied to the following areas of Table I. The upper left-hand quartile for the 16 di- or interhalogens, XX′. In this case our analysis would give two parametrizations of elemental entropy contributions for the halogen atoms. When X is the first atom, the parametric form would be: S*(X) = SXi – ΦS and when X is the second listed halogen atom in the form: S*(X) = SXj – ΦS in terms of an un- determined parameter Φ (Note: Φ ≠ Θ because we might be choosing a different data set for the analysis, e.g. the homonuclear diatomics, and so want to distinguish between the resulting parameters.) This approach would give two values for the same element, which could be equated and Φ evaluated directly. The result would be absolute individual elemental contributions, S*(X) which would additively sum to generate the original data. Applied to “the lower right-hand quartile” of Table I, for the 25 alkali metal dimers, MM′ a similar analysis would provide immediately evaluation of the (different) un- determined parameter in this case also. Finally, applied to the whole Table I, an analysis would produce the overall most efficacious parameters to use outside the table of compounds but could not provide any basis for testing the predictivity of this approach. Hence we make use of the choice of subset used in this paper.
15a. Latimer W. M.: Oxidation Potentials, 2nd ed., Appendix III. Prentice Hall, Englewood Cliffs 1952.
15b. Latimer W. M.: J. Am. Chem. Soc. 1921, 43, 818. <https://doi.org/10.1021/ja01437a011>