Collect. Czech. Chem. Commun.
2004, 69, 189-212
https://doi.org/10.1135/cccc20040189
A Coupled Cluster Study of van der Waals Interactions of the He Atom with CN, NO and O2 Radicals
Juraj Raaba, Andrej Antušeka,b, Stanislav Biskupičc and Miroslav Urbana,*
a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovakia
b Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-842 36 Bratislava, Slovakia
c Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
References
1. Hobza P., Zahradník R.: Intermolecular Complexes (The Role of van der Waals Systems in Physical Chemistry and in Biodisciplines). Elsevier, Amsterdam 1988.
2. Chem. Rev. 1988, 88, 871.
< P., Zahradník R.: https://doi.org/10.1021/cr00088a004>
3. Chem. Rev. 2000, 100, 4227.
< G., Szcześniak M. M.: https://doi.org/10.1021/cr990048z>
4. Mol. Phys. 1996, 89, 425.
< J. V., Zahradník R., Hobza P., Urban M.: https://doi.org/10.1080/00268979609482483>
5. Chem. Rev. 1994, 94, 1807.
< K. R., Fraser G. T., Novick S. E., Klemperer W.: https://doi.org/10.1021/cr00031a004>
6. Annu. Rev. Phys. Chem. 1994, 45, 367.
< D. J.: https://doi.org/10.1146/annurev.pc.45.100194.002055>
7. J. Phys. Chem. 1992, 96, 1024.
< R. C., Saykally R. J.: https://doi.org/10.1021/j100182a006>
8. Annu. Rev. Phys. Chem. 1993, 41, 423.
J. M.:
9. J. Phys. Chem. 1996, 100, 12945.
< Z., Miller R. E.: https://doi.org/10.1021/jp960574j>
10. Chem. Phys. Lett. 1986, 125, 561.
< N., Ali A., Dagdigian P. J.: https://doi.org/10.1016/0009-2614(86)87099-3>
11. J. Chem. Phys. 1986, 85, 3860.
< N., Ali A., Dagdigian P. J.: https://doi.org/10.1063/1.450906>
12. J. Chem. Phys. 1986, 85, 7098.
< G., Ali A., Dagdigian P. J.: https://doi.org/10.1063/1.451396>
13. J. Chem. Phys. 1987, 87, 2045.
< A., Jihua G., Dagdigian P. J.: https://doi.org/10.1063/1.453179>
14. J. Chem. Phys. 1988, 89, 3139.
< H. J., Follmeg B., Alexander M. H.: https://doi.org/10.1063/1.454971>
15. Astrophys. Space Sci. 1996, 236, 11.
< J. B., Huong Y., Titauchuk T.: https://doi.org/10.1007/BF00644317>
16. J. Chem. Soc. 1998, 94, 629.
P., Dyke J. M., Wright T. G.:
17. J. Chem. Phys. 1993, 99, 2855.
< T. N., Kotake S.: https://doi.org/10.1063/1.465194>
18. J. Phys. Chem. 1986, 90, 4961.
< P. D. A., Western C. M., Howard B. J.: https://doi.org/10.1021/j100412a019>
19. J. Chem. Phys. 1995, 103, 6973.
< M., Alexander M. H.: https://doi.org/10.1063/1.470323>
20. J. Chem. Phys. 1998, 109, 157.
< E. P. F., Wright T. G.: https://doi.org/10.1063/1.476533>
21. J. Chem. Phys. 2000, 112, 2195.
< J., Chalasiński G., Berry M. T., Bukowski R., Cybulski S. M.: https://doi.org/10.1063/1.480785>
22. J. Chem. Phys. 1984, 81, 3168.
< J. H., Duijneveldt F. B.: https://doi.org/10.1063/1.448021>
23. J. Chem. Phys. 1986, 101, 243.
R., Staemmler V.:
24. J. Chem. Phys. 1996, 104, 7997.
< S. M., Burcl R., Szceśniak M. M., Chalasiński G.: https://doi.org/10.1063/1.471516>
25. J. Chem. Phys. 1979, 70, 541.
< M., Slankas J. T., Kuppermann A.: https://doi.org/10.1063/1.437168>
26. J. Chem. Phys. 1983, 78, 5629.
< M., Kohl K. H., Toennies J. P., Gianturco F. A.: https://doi.org/10.1063/1.445443>
27. J. Chem. Phys. 1991, 95, 195.
< L., Casavecchia P., Pirani F., Vecchiocattivi F., Volpi G. G., Brocks G., van der Avoird A., Heijmen B., Reuss J.: https://doi.org/10.1063/1.461475>
28. Nature (London) 1994, 371, 399.
< V., Ascenzi D., Cappelletti D., Pirani F.: https://doi.org/10.1038/371399a0>
29. J. Chem. Phys. 1999, 111, 2620.
< V., Ascenzi D., de Castro Vítores, Pirani F., Cappelletti D.: https://doi.org/10.1063/1.479537>
30. J. Chem. Phys. 1999, 111, 6821.
< J. R., Nesbitt D. J.: https://doi.org/10.1063/1.479975>
31. J. Chem. Phys. 2000, 113, 9562.
< G. C., Struniewicz I. M.: https://doi.org/10.1063/1.1321311>
32. J. Comput. Chem. 1999, 20, 857.
< V., Laurinc V., Biskupič S.: https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<857::AID-JCC10>3.0.CO;2-#>
33. Buckingham A. D. in: Intermolecular Interactions: From Diatomics to Biopolymers (B. Pullman, Ed.), p. 1. Willey, New York 1978.
34. Chem. Rev. 1988, 88, 943.
< G., Gutowski M.: https://doi.org/10.1021/cr00088a007>
35. Chem. Rev. 1994, 94, 1723.
< G., Szcześniak M. M.: https://doi.org/10.1021/cr00031a001>
36. J. Phys. Chem. 2000, 104, 96.
< I., Lukeš V., Laurinc V., Biskupič S.: https://doi.org/10.1021/jp992485n>
37. Collect. Czech. Chem. Commun. 1998, 63, 1409.
< M., Neogrády P., Raab J., Diercksen G. H. D.: https://doi.org/10.1135/cccc19981409>
38. J. Mol. Struct. (THEOCHEM) 2001, 547, 219.
< M., Urban M., Kellö V., Diercksen G. H. F.: https://doi.org/10.1016/S0166-1280(01)00472-9>
39. Mol. Phys. 2002, 100, 541.
< P., Medveď M., Černušák I., Urban M.: https://doi.org/10.1080/00268970110095660>
40. Mol. Phys. 1970, 19, 553.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
41. Chem. Phys. Lett. 1985, 157, 479.
< K., Trucks G. W., Pople J. A., Head-Gordon M.: https://doi.org/10.1016/S0009-2614(89)87395-6>
42. J. Chem. Phys. 1985, 83, 4041.
< M., Noga J., Cole S. J., Bartlett R. J.: https://doi.org/10.1063/1.449067>
43. Int. J. Quantum Chem. 1995, 55, 187.
< P., Urban M.: https://doi.org/10.1002/qua.560550214>
44. J. Chem. Phys. 1993, 99, 5219.
< P. J., Hampel C., Werner H.-J.: https://doi.org/10.1063/1.465990>
45. J. Chem. Phys. 1997, 107, 9028.
< P., Gauss J.: https://doi.org/10.1063/1.475220>
46a. J. Chem. Phys. 1977, 67, 303.
< J.: https://doi.org/10.1063/1.434526>
46b. J. Chem. Phys. 1997, 102, 2012.
X., Paldus J.:
47. Theor. Chim. Acta 1991, 79, 1.
< C. L., Schaefer III H. F.: https://doi.org/10.1007/BF01113327>
48. J. Chem. Phys. 1994, 100, 3706.
< P., Urban M., Hubač I.: https://doi.org/10.1063/1.466359>
49. Andersson K., Barysz M., Bernhardsson A., Blomberg M. R. A., Cooper D. L., Fleig T., Fülscher M. P., de Graaf C., Hess B. A., Karlström G., Lindh R., Malmqvist P.-Å., Neogrády P., Olsen J., Roos B. O., Sadlej A. J., Schütz M., Schimmelpfennig B., Seijo L., Serrano-Andrés L., Siegbahn P. E. M., Stalring J., Thorsteinsson T., Veryazov V., Widmark P.-O.: MOLCAS, Version 5. Lund University, Lund 2000.
50. J. Chem. Phys. 1989, 90, 1007.
< T. H., Jr.: https://doi.org/10.1063/1.456153>
51a. J. Chem. Phys. 1994, 100, 2975.
< D. E., Dunning T. H., Jr.: https://doi.org/10.1063/1.466439>
51b. J. Chem. Phys. 1992, 96, 6796.
< R. A., Dunning T. H., Jr., Harrison R. J.: https://doi.org/10.1063/1.462569>
52. J. Chem. Phys. 1994, 100, 2975.
< D. E., Dunning T. H., Jr.: https://doi.org/10.1063/1.466439>
53. Mol. Phys. 1999, 96, 529.
< T., Dunning T. H., Jr.: https://doi.org/10.1080/00268979909482990>
54. Huber K. P., Herzberg H.: Molecular Spectra and Structure, Vol. IV. Van Nostrand Reinhold, New York 1979.
55. J. Chem. Phys. 1995, 103, 7374.
< H. L., Mas E. M., Szalewicz K., Jeziorski B.: https://doi.org/10.1063/1.470309>
56. Collect. Czech. Chem. Commun. 2003, 68, 463.
< M., Bukowski R., Cencek W., Jaszunski M., Jeziorski B., Szalewicz K.: https://doi.org/10.1135/cccc20030463>
57. Chem. Phys. Lett. 1998, 286, 243.
< A., Helgaker T., Jorgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.: https://doi.org/10.1016/S0009-2614(98)00111-0>
58. Helv. Chim. Acta 2001, 84, 1328.
< L., Zahradník R.: https://doi.org/10.1002/1522-2675(20010613)84:6<1328::AID-HLCA1328>3.0.CO;2-0>
59. Chem. Phys. Lett. 1992, 200, 113.
A., Koch H., Jorgensen P., Christiansen O.:
60. J. Chem. Phys. 1999, 111, 7426.
< M. H.: https://doi.org/10.1063/1.480066>
61. Mol. Phys. 1975, 29, 467.
< A. I. M.: https://doi.org/10.1080/00268977500100401>
62. Chem. Rev. 1994, 94, 1887.
< B., Moszynski R., Szalewicz K.: https://doi.org/10.1021/cr00031a008>
63. Mol. Phys. 2001, 99, 1867.
< J., Sun H.: https://doi.org/10.1080/00268970110078326>