Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2004, 69, 105-120

Convergence Enhancement in Perturbation Theory

Peter R. Surján* and Ágnes Szabados

Department of Theoretical Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary

Crossref Cited-by Linking

  • Gombás András, Surján Péter R., Szabados Ágnes: Analysis and Assessment of Knowles’ Partitioning in Many-Body Perturbation Theory. J. Chem. Theory Comput. 2024. <>
  • Surján Péter R., Simon Kevin, Szabados Á.: Stability analysis of the Lippmann–Schwinger equation. Molecular Physics 2023, 121. <>
  • Smerlak Matteo: Perturbation theory without power series: Iterative construction of non-analytic operator spectra. EPL 2022, 140, 32001. <>
  • Mihálka Zsuzsanna É., Szabados Ágnes, Surján Péter R.: Effect of partitioning on the convergence properties of the Rayleigh-Schrödinger perturbation series. The Journal of Chemical Physics 2017, 146. <>
  • Mihálka Zsuzsanna É., Surján Péter R.: Analytic-continuation approach to the resummation of divergent series in Rayleigh-Schrödinger perturbation theory. Phys. Rev. A 2017, 96. <>
  • Tóth Zsuzsanna, Szabados Ágnes: Energy error bars in direct configuration interaction iteration sequence. The Journal of Chemical Physics 2015, 143. <>
  • Chang Shu-Wei, Witek Henryk A.: Choice of Optimal Shift Parameter for the Intruder State Removal Techniques in Multireference Perturbation Theory. J. Chem. Theory Comput. 2012, 8, 4053. <>
  • Juhász Tamás, Mazziotti David A.: Improved perturbative treatment of electronic energies from a minimal-norm approach to many-body perturbation theory. The Journal of Chemical Physics 2005, 122. <>