Collect. Czech. Chem. Commun.
2004, 69, 105-120
https://doi.org/10.1135/cccc20040105
Convergence Enhancement in Perturbation Theory
Peter R. Surján* and Ágnes Szabados
Department of Theoretical Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary
Crossref Cited-by Linking
- Gombás András, Surján Péter R., Szabados Ágnes: Analysis and Assessment of Knowles’ Partitioning in Many-Body Perturbation Theory. J. Chem. Theory Comput. 2024, 20, 5094. <https://doi.org/10.1021/acs.jctc.4c00166>
- Surján Péter R., Simon Kevin, Szabados Á.: Stability analysis of the Lippmann–Schwinger equation. Molecular Physics 2023, 121. <https://doi.org/10.1080/00268976.2022.2091053>
- Smerlak Matteo: Perturbation theory without power series: Iterative construction of non-analytic operator spectra. EPL 2022, 140, 32001. <https://doi.org/10.1209/0295-5075/ac9e72>
- Mihálka Zsuzsanna É., Szabados Ágnes, Surján Péter R.: Effect of partitioning on the convergence properties of the Rayleigh-Schrödinger perturbation series. The Journal of Chemical Physics 2017, 146. <https://doi.org/10.1063/1.4978898>
- Mihálka Zsuzsanna É., Surján Péter R.: Analytic-continuation approach to the resummation of divergent series in Rayleigh-Schrödinger perturbation theory. Phys. Rev. A 2017, 96. <https://doi.org/10.1103/PhysRevA.96.062106>
- Tóth Zsuzsanna, Szabados Ágnes: Energy error bars in direct configuration interaction iteration sequence. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4928977>
- Chang Shu-Wei, Witek Henryk A.: Choice of Optimal Shift Parameter for the Intruder State Removal Techniques in Multireference Perturbation Theory. J. Chem. Theory Comput. 2012, 8, 4053. <https://doi.org/10.1021/ct2006924>
- Juhász Tamás, Mazziotti David A.: Improved perturbative treatment of electronic energies from a minimal-norm approach to many-body perturbation theory. The Journal of Chemical Physics 2005, 122. <https://doi.org/10.1063/1.1862232>