Collect. Czech. Chem. Commun. 2003, 68, 1541-1554
https://doi.org/10.1135/cccc20031541

Poly(propylene amine) Dendrimers Decorated with Dimethoxybenzene Units. Photophysical and Electrochemical Properties

Paola Ceronia, Veronica Vicinellia, Mauro Maestria, Vincenzo Balzania,*, Marius Gorkab, Sang-Kyu Leeb, Patrick Dragutb and Fritz Vögtleb,*

a Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
b Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk Strasse 1, 53121 Bonn, Germany

References

1a. Newkome G. R., Moorefield C., Vögtle F.: Dendrimers and Dendrons: Concepts, Syntheses, Perspectives. VCH, Weinheim 2001.
1b. Fréchet J. M. J., Tomalia D. A. (Eds): Dendrimers and other Dendritic Polymers. J. Wiley, Sussex 2001.
2. Gittings P. J., Twyman L. J.: Supramol. Chem. 2002, 15, 5. <https://doi.org/10.1080/1061027031000073199>
3. Buhleier E. W., Wehner W., Vögtle F.: Synthesis 1978, 155. <https://doi.org/10.1055/s-1978-24702>
4. Schlüter A. D., Rabe J. P.: Angew. Chem., Int. Ed. 2000, 39, 864. <https://doi.org/10.1002/(SICI)1521-3773(20000303)39:5<864::AID-ANIE864>3.0.CO;2-E>
5a. Balzani V., Campagna S., Denti G., Juris A., Serroni S., Venturi M.: Acc. Chem. Res. 1998, 31, 26. <https://doi.org/10.1021/ar950202d>
5b. Adronov A., Fréchet J. M. J.: Chem. Commun. 2000, 1701. <https://doi.org/10.1039/b005993p>
5c. Hecht S., Fréchet J. M. J.: Angew. Chem., Int. Ed. 2001, 40, 74. <https://doi.org/10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C>
5d. Gorman C. B., Smith J. C.: Acc. Chem. Res. 2001, 34, 60. <https://doi.org/10.1021/ar000044c>
5e. Balzani V., Ceroni P., Juris A., Venturi M., Campagna S., Puntoriero F., Serroni S.: Coord. Chem. Rev. 2001, 219, 545. <https://doi.org/10.1016/S0010-8545(01)00351-4>
5f. Balzani V., Ceroni P., Maestri M., Saudan C., Vicinelli V.: Top. Curr. Chem., in press.
5g. Campagna S., Serroni S., Puntoriero F., Di Pietro C., Ricevuto V. in: Electron Transfer in Chemistry (V. Balzani, Ed.), Vol. 5, p. 186. Wiley VCH, Weinheim 2001.
6a. Vögtle F., Gestermann S., Kauffmann C., Ceroni P., Vicinelli V., Balzani V.: J. Am. Chem. Soc. 2000, 122, 10398. <https://doi.org/10.1021/ja993745h>
6b. Xu M.-H., Lin J., Hu Q.-S., Pu L.: J. Am. Chem. Soc. 2002, 124, 14239. <https://doi.org/10.1021/ja020989k>
7a. Ardoin N., Astruc D.: Bull. Soc. Chim. Fr. 1995, 132, 875.
7b. Smith D. K., Diederich F.: Chem. Eur. J. 1998, 4, 1353. <https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1353::AID-CHEM1353>3.0.CO;2-0>
7c. Cuadrado I., Morán M., Casado C. M., Alonso B., Losada J.: Coord. Chem. Rev. 1999, 193–195, 395. <https://doi.org/10.1016/S0010-8545(99)00036-3>
7d. Juris A., Venturi M., Ceroni P., Balzani V., Campagna S., Serroni S.: Collect. Czech. Chem. Commun. 2001, 66, 1. <https://doi.org/10.1135/cccc20010001>
7e. Juris A. in: Electron Transfer in Chemistry (V. Balzani, Ed.), Vol. 3, p. 655. Wiley VCH, Weinheim 2001.
7f. Diederich F., Felber B.: Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4778. <https://doi.org/10.1073/pnas.052568099>
8a. Casado C. M., Cuadrado I., Morán M., Alonso B., García B., González B., Losada J.: Coord. Chem. Rev. 1999, 185–186, 53. <https://doi.org/10.1016/S0010-8545(98)00252-5>
8b. Nlate S., Ruiz J., Blais J.-C., Astruc D.: Chem. Commun. 2000, 417. <https://doi.org/10.1039/a908791e>
8c. Nlate S., Ruiz J., Sartor V., Navarro R., Blais J.-C., Astruc D.: Chem. Eur. J. 2000, 6, 2544. <https://doi.org/10.1002/1521-3765(20000717)6:14<2544::AID-CHEM2544>3.0.CO;2-J>
8d. Takada K., Díaz D. J., Abruña H. D., Cuadrado I., González B., Casado C. M., Alonso B., Morán M., Losada J.: Chem. Eur. J. 2001, 7, 1109. <https://doi.org/10.1002/1521-3765(20010302)7:5<1109::AID-CHEM1109>3.0.CO;2-#>
8e. Baker W. S., Lemon B. I., Crooks R. M.: J. Phys. Chem. B 2001, 105, 8885. <https://doi.org/10.1021/jp012473d>
8f. Alonso B., Astruc D., Blais J.-C., Nlate S., Rigaut S., Ruiz J., Sartor V., Valério C.: C. R. Acad. Sci. Paris, Chimie/Chemistry 2001, 4, 173.
8g. Goldsmith J. I., Takada K., Abruña H. D.: J. Phys. Chem. B 2002, 106, 8504. <https://doi.org/10.1021/jp014080k>
9a. Armaroli N., Boudon C., Felder D., Gisselbrecht J.-P., Gross M., Marconi G., Nicoud J.-F., Nierengarten J.-F., Vicinelli V.: Angew. Chem., Int. Ed. 1999, 38, 370. <https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3730::AID-ANIE3730>3.0.CO;2-D>
9b. Vögtle F., Plevoets M., Nieger M., Azzellini G. C., Credi A., De Cola L., De Marchis V., Venturi M., Balzani V.: J. Am. Chem. Soc. 1999, 121, 6290. <https://doi.org/10.1021/ja990430t>
9c. Newkome G. R., Narayanan V. V., Godínez L. A.: J. Org. Chem. 2000, 65, 1643. <https://doi.org/10.1021/jo991278g>
9d. Apperloo J. J., Janssen R. A., Malenfant P. R. L., Groenendal L., Fréchet J. M. J.: J. Am. Chem. Soc. 2000, 122, 7042. <https://doi.org/10.1021/ja994259x>
10a. Vögtle F., Gestermann S., Kauffmann C., Ceroni P., Vicinelli V., De Cola L., Balzani V.: J. Am. Chem. Soc. 1999, 121, 12161. <https://doi.org/10.1021/ja992942d>
10b. Balzani V., Ceroni P., Gestermann S., Gorka M., Kauffmann C., Vögtle F.: Tetrahedron 2002, 58, 629. <https://doi.org/10.1016/S0040-4020(01)01094-8>
10c. Vögtle F., Gorka M., Hesse R., Ceroni P., Maestri M., Balzani V.: Photochem. Photobiol. Sci. 2002, 1, 45.
10d. Saudan Ch., Balzani V., Ceroni P., Gorka M., Maestri M., Vicinelli V., Vögtle F.: Tetrahedron 2003, 59, 3845. <https://doi.org/10.1016/S0040-4020(03)00434-4>
11a. Schenning A. P. H. J., Elissen-Roman C., Weener J.-W., Baars M. W. P. L., van der Gaast S. J., Meijer E. W.: J. Am. Chem. Soc. 1998, 120, 8199. <https://doi.org/10.1021/ja9736774>
11b. Pötschke D., Ballauff M., Lindner P., Fischer M., Vögtle F.: Macromol. Chem. Phys. 2000, 201, 330. <https://doi.org/10.1002/(SICI)1521-3935(20000201)201:3<330::AID-MACP330>3.0.CO;2-0>
11c. Ballauff M.: Top. Curr. Chem. 2001, 212, 176.
12. Demas J. N., Crosby G. A.: J. Phys. Chem. 1971, 75, 991.
13. Berlman I. B.: Handbook of Fluorescence Spectra of Aromatic Molecules. Academic Press, London 1965.
14. Zweig A., Hodgson W. G., Jura W. H.: J. Am. Chem. Soc. 1964, 86, 4124. <https://doi.org/10.1021/ja01073a043>
15. Flanagan J. B., Margel S., Bard A. J., Anson F. C.: J. Am. Chem. Soc. 1978, 100, 4248. <https://doi.org/10.1021/ja00481a040>
16. The chronoamperometric experiments performed with a Pt-disk ultramicroelectrode (r = 25 μm) allowed us to determine in the case of 1 the diffusion coefficient (1.1 × 10–5 cm2 s–1) and the number of exchanged electrons (1) by the method reported by Bard et al.17 On the other hand, for the dendrimers the current measured after a potential step from 0 to +2 V used in the chronoamperometric technique is due not only to the oxidation of the DMB units, but also to that of the amino groups at less positive potential values. The discrimination between these two contributions is not feasible.
17. Denuault G., Mirkin M. V., Bard A. J.: J. Electroanal. Chem. Interfacial Electrochem. 1991, 308, 27. <https://doi.org/10.1016/0022-0728(91)85056-U>