Collect. Czech. Chem. Commun. 2003, 68, 1105-1118
https://doi.org/10.1135/cccc20031105

Transition States of Cisplatin Binding to Guanine and Adenine: ab initio Reactivity Study

Zdenek Chvala and Miroslav Šípb,*

a Department of Chemistry, Faculty of Biological Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
b Department of Health Physics and Biophysics, Faculty of Health and Social Studies, University of South Bohemia, Jírovcova 24, 370 04 České Budějovice, Czech Republic

References

1. Eastman A.: Biochemistry 1985, 24, 5027. <https://doi.org/10.1021/bi00340a011>
2. Fichtinger-Schepman A. M. J., Van der Veer J. L., Den Hartog J. H. J., Lohman P. H. M., Reedijk J.: Biochemistry 1985, 24, 707. <https://doi.org/10.1021/bi00324a025>
3. Reeder F., Guo Z., Murdoch P. S., Corazza A., Hambley T. W., Berners-Price S. J., Chottard J. C., Sadler P. J.: Eur. J. Biochem. 1997, 249, 370. <https://doi.org/10.1111/j.1432-1033.1997.00370.x>
4. Gonnet F., Reeder F., Kozelka J., Chottard J. C.: Inorg. Chem. 1996, 35, 1653. <https://doi.org/10.1021/ic951136e>
5. Elmroth S. K. C., Lippard S. J.: J. Am. Chem. Soc. 1994, 116, 3633. <https://doi.org/10.1021/ja00087a073>
6. Gonnet F., Kocher F., Blais J. C., Bolbach G., Tabet J. C., Chottard J. C.: J. Mass Spectrom. 1996, 31, 802. <https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<802::AID-JMS358>3.0.CO;2-Y>
7. Miller S. E., House D. A.: Inorg. Chim. Acta 1990, 173, 53; and references therein. <https://doi.org/10.1016/S0020-1693(00)91054-5>
8. Berners-Price S. J., Frenkiel T. A., Frey U., Ranford J. D., Sadler P. J.: J. Chem. Soc., Chem. Commun. 1992, 789. <https://doi.org/10.1039/c39920000789>
9. Black C. B., Cowan J. A.: J. Am. Chem. Soc. 1994, 116, 1174. <https://doi.org/10.1021/ja00083a002>
10. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. J., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A.: J. Comput. Chem. 1993, 14, 1347. <https://doi.org/10.1002/jcc.540141112>
11. Frisch M. J., Trucks G. W., Schlegel H. B., Gill P. M. W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T. A., Petersson G. A., Montgomery J. A., Raghavachari K., Al-Laham M. A., Zakrzewski V. G., Ortiz J. V., Foresman J. B., Peng C. Y., Ayala P. A., Wong M. W., Andres J. L., Replogle E. S., Gomperts R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker J., Stewart J. P., Head-Gordon M., Gonzalez C., Pople J. A.: Gaussian 94 (Revision D.4). Gaussian, Inc., Pittsburgh (PA) 1995.
12. Hay P. J., Wadt W. R.: J. Phys. Chem. 1985, 82, 299. <https://doi.org/10.1063/1.448975>
13. Stevens W. J., Krauss M., Basch H., Jasien P. G.: Can. J. Chem. 1992, 70, 612. <https://doi.org/10.1139/v92-085>
14. Pavankumar P. N. V., Seetharamulu P., Yao S., Saxe J. D., Reddy D. G., Hausheer F. H.: J. Comput. Chem. 1999, 20, 365. <https://doi.org/10.1002/(SICI)1096-987X(199902)20:3<365::AID-JCC8>3.0.CO;2-1>
15. Chval Z., Šíp M.: J. Mol. Struct. (THEOCHEM) 2000, 532, 59. <https://doi.org/10.1016/S0166-1280(00)00502-9>
16. Irikura K. K., Goddard III, W. A.: J. Am. Chem. Soc. 1994, 116, 8733. <https://doi.org/10.1021/ja00098a036>
17. Takahara P. M., Frederick C. A., Lippard S. J.: J. Am. Chem. Soc. 1996, 118, 12309. <https://doi.org/10.1021/ja9625079>
18. Gelasco A., Lippard S. J.: Biochemistry 1998, 37, 9230. <https://doi.org/10.1021/bi973176v>
19. Šponer J., Sabat M., Gorb L., Leszcynski J., Lippert B., Hobza P.: J. Phys. Chem. B: At., Mol. Opt. Phys. 2000, 104, 7535. <https://doi.org/10.1021/jp001711m>
20. Pelmenschikov A., Zilberberg I., Leszcynski J., Famulari A., Sironi M., Raimondi M.: Chem. Phys. Lett. 1999, 314, 496. <https://doi.org/10.1016/S0009-2614(99)01156-2>
21. Zilberberg I. L., Avdeev V. I., Zhidomirov G. M.: J. Mol. Struct. (THEOCHEM) 1997, 418, 73. <https://doi.org/10.1016/S0166-1280(97)00066-3>
22. Burda J. V., Zeizinger M., Šponer J., Leszczynski J.: J. Chem. Phys. 2000, 113, 2224. <https://doi.org/10.1063/1.482036>
23. Hobza P., Šponer J.: Chem. Rev. (Washington, D. C.) 1999, 99, 3247. <https://doi.org/10.1021/cr9800255>
24. Burda J. V., Šponer J., Leszcynski J.: J. Biol. Inorg. Chem. 2000, 5, 178. <https://doi.org/10.1007/s007750050362>
25. Estimated by comparison of structures with only one H-bond: e.g. TSAde1b with TS1a.
26. Deubel D. V.: J. Am. Chem. Soc. 2002, 124, 5834. <https://doi.org/10.1021/ja012221q>
27. Deeth R. J., Elding L. I.: Inorg. Chem. 1996, 35, 5019. <https://doi.org/10.1021/ic950335v>
28. Pullman A., Pullman B.: Q. Rev. Biophys. 1981, 14, 289. <https://doi.org/10.1017/S0033583500002341>
29. Laoui A., Kozelka J., Chottard J.-C.: Inorg. Chem. 1988, 27, 2751. <https://doi.org/10.1021/ic00289a002>
30. Reedijk J.: Chem. Commun. 1996, 801. <https://doi.org/10.1039/cc9960000801>
31. Sullivan S. T., Ciccarese A., Fanizzi F. P., Marzilli L. G.: J. Am. Chem. Soc. 2001, 123, 9345. <https://doi.org/10.1021/ja010483m>
32. Berners-Price S. J., Frey U., Ranford J. D., Sadler P. J.: J. Am. Chem. Soc. 1993, 115, 8649. <https://doi.org/10.1021/ja00072a019>
33. Green M., Garner M., Orton D. H.: Transition Met. Chem. (London) 1992, 17, 164. <https://doi.org/10.1007/BF02910812>
34. Bonnacorsi R., Scrocco E., Tomasi J., Pullman A.: Theor. Chim. Acta 1975, 36, 339. <https://doi.org/10.1007/BF00549697>
35. 2a and TS2a, TS3b structures are the same except for the chloro ligand in the cis- position. 3a and TS3a structures have O6···H2O H-bond; TS3b structure has two O6···NH3 hydrogen bonds.