Collect. Czech. Chem. Commun. 2003, 68, 849-864
https://doi.org/10.1135/cccc20030849

Absolute Asymmetric Synthesis: A Commentary

Kurt Mislow

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, U.S.A.

References

1a. Bonner W. A.: Top. Stereochem. 1988, 18, 1. <https://doi.org/10.1002/9780470147276.ch1>
1b. Frank P., Bonner W. A., Zare R. N. in: Chemistry for the 21st Century (E. Keinan and I. Schechter, Eds), p. 175. Wiley-VCH, Weinheim 2001.
1c. MacDermott A. J. in: Chirality in Natural and Applied Science (W. J. Lough and I. W. Wainer, Eds), p. 23. Blackwell Science, Oxford 2002.
1d. Quack M.: Angew. Chem., Int. Ed. 2002, 41, 4619. <https://doi.org/10.1002/anie.200290005>
2. Feringa B. L., van Delden R. A.: Angew. Chem., Int. Ed. 1999, 38, 3418. <https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V>
3a. Bredig G.: Z. Angew. Chem. 1923, 36, 456. <https://doi.org/10.1002/ange.19230366202>
3b. “The experiments communicated in this paper are intended to serve as a preliminary study whose goal is to create optically stable substances, not, as before, by use of already present optically active substances (either by direct reaction or by catalysis), but, without any assistance from already present optically active substances, solely through the influence of asymmetric external physical forces. Such an ‘absolute’ asymmetric synthesis (or resolution), e.g., through magnetic, electrical, or photochemical forces, has been repeatedly attempted, but so far always without success.”.
4. Ritchie P. D.: Adv. Enzymol. 1947, 7, 65.
5. Eliel E. L.: Stereochemistry of Carbon Compounds, p. 78. McGraw–Hill, New York 1962.
6. Morrison J. D., Mosher H. S.: Asymmetric Organic Reactions, p. 46. Prentice-Hall, Englewood Cliffs (NJ) 1971.
7a. Bähr W., Theobald H.: Organische Stereochemie: Begriffe und Definitionen, p. 1. Springer, Berlin 1973.
7b. “The term ‘absolute’ (sometimes also ‘total’) asymmetric synthesis denotes the preparation of optically active substances from inactive starting material under chiral physical influences, i.e., without any optically active auxiliary reagent.”.
8. Sokolov V. I.: Introduction to Theoretical Stereochemistry, p. 159. Gordon and Breach, New York 1991.
9. Gawley R. E., Aubé J.: Principles of Asymmetric Synthesis, p. 15. Elsevier Science, Tarrytown (NY) 1996.
10a. Bonner W. A.: Orig. Life Evol. Biosphere 1996, 26, 27; and references therein. <https://doi.org/10.1007/BF01808158>
10b. Avalos M., Babiano R., Cintas P., Jimenez, J. L., Palacios, J. C., Barron L. D.: Chem. Rev. (Washington, D. C.) 1998, 98, 2391. <https://doi.org/10.1021/cr970096o>
10c. Buschmann H., Thede R., Heller D.: Angew. Chem., Int. Ed. 2000, 39, 4033. <https://doi.org/10.1002/1521-3773(20001117)39:22<4033::AID-ANIE4033>3.0.CO;2-2>
11. Bonner W. A. in: Exobiology (C. Ponnamperuma, Ed.), p. 170. North-Holland, Amsterdam 1972.
12a. Pearson K.: Nature 1898, 58, 495. <https://doi.org/10.1038/058495e0>
12b. Pearson K.: Nature 1898, 59, 30. <https://doi.org/10.1038/059030a0>
13a. Japp F. R.: Nature 1898, 58, 452. <https://doi.org/10.1038/058616b0>
13b. Japp F. R.: Nature 1898, 58, 616. <https://doi.org/10.1038/058616b0>
14a. Gilman H.: Iowa State Coll. J. Sci. 1929, 3, 227.
14b. Gilman H.: Chem. Bull. 1925, 12, 133.
15. Mills W. H.: Chem. Ind. (London) 1932, 750. <https://doi.org/10.1002/jctb.5000513702>
16a. Siegel J. S.: Chirality 1998, 10, 24; and references therein. <https://doi.org/10.1002/(SICI)1520-636X(1998)10:1/2<24::AID-CHIR5>3.0.CO;2-Y>
16b. Siegel J. S.: Nature 2002, 419, 346. <https://doi.org/10.1038/419346a>
17. Paranjape K. D., Phalnikar N. L., Bhide B. V., Nargund K. S.: Nature 1944, 153, 141. <https://doi.org/10.1038/153141a0>
18a. Cornforth J. W., Cornforth R. H., Dewar M. J. S.: Nature 1944, 153, 317. <https://doi.org/10.1038/153317b0>
18b. O’Gorman J. M.: J. Am. Chem. Soc. 1944, 66, 1041. <https://doi.org/10.1021/ja01234a505>
19a. Mislow K., Bickart P.: Isr. J. Chem. 1976/77, 15, 1. <https://doi.org/10.1002/ijch.197600002>
19b. Mislow K. in: Fuzzy Logic in Chemistry (D. H. Rouvray, Ed.), p. 65. Academic Press, San Diego 1997.
20a. Seebach D., Rheiner P. B., Greiveldinger G., Butz T., Sellner H.: Top. Curr. Chem. 1998, 197, 125. <https://doi.org/10.1007/3-540-69779-9_4>
20b. Recker J., Müller W. M., Müller U., Kubota T., Okamoto Y., Nieger M., Vögtle F.: Chem. Eur. J. 2002, 8, 4434. <https://doi.org/10.1002/1521-3765(20021004)8:19<4434::AID-CHEM4434>3.0.CO;2-#>
21. Mislow K.: Chirality 2002, 14, 126. <https://doi.org/10.1002/chir.10069>
22. Scriven M.: J. Philos. 1959, 56, 857. <https://doi.org/10.2307/2022316>
23a. Puchot C., Samuel O., Dunach E., Zhao S., Agami C., Kagan H. B.: J. Am. Chem. Soc. 1986, 108, 2353. <https://doi.org/10.1021/ja00269a036>
23b. Fenwick D. R., Kagan, H. B.: Top. Stereochem. 1999, 22, 257; and references therein. <https://doi.org/10.1002/9780470147313.ch5>
23c. Blackmond D. G.: Acc. Chem. Res. 2000, 33, 402; and references therein. <https://doi.org/10.1021/ar990083s>
24. Langenbeck W., Triem G.: Z. Phys. Chem., A 1936, 177, 401.
25. Frank F. C.: Biochim. Biophys. Acta 1953, 11, 459. <https://doi.org/10.1016/0006-3002(53)90082-1>
26a. Calvin M.: Chemical Evolution, p. 149. Oxford University Press, Oxford 1969.
26b. Seelig F. F.: J. Theor. Biol. 1971, 31, 355. <https://doi.org/10.1016/0022-5193(71)90193-7>
26c. Seelig F. F.: J. Theor. Biol. 1971, 32, 93. <https://doi.org/10.1016/0022-5193(71)90138-X>
26d. Seelig F. F.: J. Theor. Biol. 1972, 34, 197. <https://doi.org/10.1016/0022-5193(72)90064-1>
27. Mason S.: Chem. Soc. Rev. 1988, 17, 347. <https://doi.org/10.1039/cs9881700347>
28. Bolm C., Bienewald F., Seger A.: Angew. Chem., Int. Ed. Engl. 1996, 35, 1657. <https://doi.org/10.1002/anie.199616571>
29. Mikami K., Terada M., Korenaga T., Matsumoto Y., Ueki M., Angelaud R.: Angew. Chem., Int. Ed. 2000, 39, 3533.
30. Avalos M., Babiano R., Cintas P., Jimenez J. L., Palacios J. C.: Chem. Commun. 2000, 887. <https://doi.org/10.1039/a908300f>
31. Todd M. H.: Chem. Soc. Rev. 2002, 31, 211. <https://doi.org/10.1039/b104169j>
32. Soai K., Shibata T., Morioka H., Choji K.: Nature 1995, 378, 767. <https://doi.org/10.1038/378767a0>
33a. Shibata T., Choji K., Hayase T., Aizu Y., Soai K.: Chem. Commun. 1996, 1235. <https://doi.org/10.1039/cc9960001235>
33b. Shibata T., Morioka H., Hayase T., Choji K., Soai K.: J. Am. Chem. Soc. 1996, 118, 471. <https://doi.org/10.1021/ja953066g>
33c. Shibata T., Morioka H., Tanji S., Hayase T., Kodaka Y., Soai K.: Tetrahedron Lett. 1996, 37, 8783. <https://doi.org/10.1016/S0040-4039(96)02031-X>
33d. Shibata T., Hayase T., Yamamoto J., Soai K.: Tetrahedron: Asymmetry 1997, 8, 1717. <https://doi.org/10.1016/S0957-4166(97)00183-3>
33e. Soai K., Shibata T.: J. Synth. Org. Chem. Jpn. 1997, 55, 994. <https://doi.org/10.5059/yukigoseikyokaishi.55.994>
33f. Shibata T., Yamamoto J., Matsumoto N., Yonekubo S., Osanai S., Soai K.: J. Am. Chem. Soc. 1998, 120, 12157. <https://doi.org/10.1021/ja980815w>
33g. Shibata T., Yonekubo S., Soai K.: Angew. Chem., Int. Ed. 1999, 38, 659. <https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<659::AID-ANIE659>3.0.CO;2-P>
33h. Soai K., Osanai S., Kadowaki K., Yonekubo S., Shibata T., Sato I: J. Am. Chem. Soc. 1999, 121, 11235. <https://doi.org/10.1021/ja993128t>
33i. Sato I., Omiya D., Saito T., Soai K.: J. Am. Chem. Soc. 2000, 122, 11739. <https://doi.org/10.1021/ja002992e>
33j. Tanji S., Kodaka Y., Ohno A., Shibata T., Sato I., Soai K.: Tetrahedron: Asymmetry 2000, 11, 4249. <https://doi.org/10.1016/S0957-4166(00)00420-1>
33k. Sato I., Kadowaki K., Soai K.: Angew. Chem., Int. Ed. 2000, 39, 1510. <https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1510::AID-ANIE1510>3.0.CO;2-R>
33l. Sato I., Omiya D., Tsukiyama K., Ogi Y., Soai K.: Tetrahedron: Asymmetry 2001, 12, 1965. <https://doi.org/10.1016/S0957-4166(01)00351-2>
33m. Sato I., Yamashima R., Kadowaki K., Yamamoto J., Shibata T., Soai K.: Angew. Chem., Int. Ed. 2001, 40, 1096. <https://doi.org/10.1002/1521-3773(20010316)40:6<1096::AID-ANIE10960>3.0.CO;2-K>
33n. Tanji S., Ohno A., Sato I., Soai K.: Org. Lett. 2001, 3, 287. <https://doi.org/10.1021/ol006921w>
33o. Sato I., Kadowaki K., Ohgo Y., Soai K., Ogino H.: Chem. Commun. 2001, 1022. <https://doi.org/10.1039/b102143p>
33p. Sato I., Osanai S., Kadowaki K., Sugiyama T., Shibata T., Soai K.: Chem. Lett. 2002, 168. <https://doi.org/10.1246/cl.2002.168>
33q. Sato I., Yanagi T., Soai K.: Chirality 2002, 14, 166. <https://doi.org/10.1002/chir.10068>
33r. Sato I., Urabe H., Ishiguro S., Shibata T., Soai K.: Angew. Chem., Int. Ed. 2003, 42, 315. <https://doi.org/10.1002/anie.200390105>
34a. Soai K.: Enantiomer 1999, 4, 591.
34b. Soai K., Shibata T. in: Catalytic Asymmetric Synthesis, 2nd ed. (I. Ojima, Ed.), p. 699. Wiley-VCH, New York 2000.
34c. Soai K., Shibata T., Sato I.: Acc. Chem. Res. 2000, 33, 382. <https://doi.org/10.1021/ar9900820>
34d. Soai K., Sato I., Shibata T.: Chem. Record 2001, 1, 321. <https://doi.org/10.1002/tcr.1017>
34e. Soai K., Sato I.: Enantiomer 2001, 6, 189.
34f. Soai K., Sato I.: Chirality 2002, 14, 548. <https://doi.org/10.1002/chir.10081>
35. Soai K., Shibata T., Yonekubo S., Sato I.: Unpublished results.
36. Singleton D. A., Vo L. K.: J. Am. Chem. Soc. 2002, 124, 10010. <https://doi.org/10.1021/ja027129o>
37a. Blackmond D. G., McMillan C. R., Ramdeehul S., Schorm A., Brown J. M.: J. Am. Chem. Soc. 2001, 123, 10103. <https://doi.org/10.1021/ja0165133>
37b. Blackmond D. G.: Adv. Synth. Catal. 2002, 344, 156. <https://doi.org/10.1002/1615-4169(200202)344:2<156::AID-ADSC156>3.0.CO;2-1>
38. Soai K., Shibata T., Kowata Y.: Japan Kokai Tokkyo Koho JP 1997 9-268179. Application date: February 1 and April 18, 1996. An abstract of JP9268179 is readily available from the European Patent Office (http://ep.espacenet.com) and, as JP-09268179 A, from Derwent World Patent Index, update No. 51 of 1997 (accession No. 1997-554699).
39. Kondepudi D. K., Asakura K.: Acc. Chem. Res. 2001, 34, 946. <https://doi.org/10.1021/ar010089t>
40. Soai K., Sato I., Shibata T., Komiya S., Hayashi M., Matsueda Y., Imamura H., Hayase T., Morioka H., Tabira H., Yamamoto J., Kowata Y.: Tetrahedron: Asymmetry 2003, 14, 185. <https://doi.org/10.1016/S0957-4166(02)00791-7>
41. If the probability of an event E at each trial is p, then the probability that E will occur with a relative frequency that is close to p increases with the number of trials and approaches 1 as the number of trials becomes extremely large. In the present context, E is the generation of R or S enantiomers and p = 0.5.
42a. Stove D. C.: The Rationality of Induction. Clarendon Press, Oxford 1986.
42b. Mellor D. H.: The Warrant of Induction. Cambridge University Press, Cambridge 1988.
42c. Mortimer H.: The Logic of Induction. Ellis Horwood, Chichester 1988.
42d. Gustason W.: Reasoning from Evidence. Macmillan College Publishing Co., New York 1994.
42e. Howson C.: Hume’s Problem: Induction and the Justification of Belief. Clarendon Press, Oxford 2000.
43a. Adams M. M.: William Ockham, Vol. 1, p. 156–157. University of Notre Dame Press, Notre Dame (IN) 1987.
43b. Thorburn W. M.: Mind 1918, 27, 345. <https://doi.org/10.1093/mind/XXVII.3.345>
43c. Hoffmann R., Minkin V. I., Carpenter B. K.: Bull. Soc. Chim. Fr. 1996, 133, 117.
44. According to an aphorism attributed to Albert Einstein, “Alles sollte so einfach wie möglich gemacht werden, aber nicht einfacher” [“Everything should be made as simple as possible, but not simpler”]. See: Quadbeck-Seeger H.-J.: Zwischen den Zeichen. Aphorismen über und aus Natur und Wissenschaft, p. 71. VCH, Weinheim 1988.