Collect. Czech. Chem. Commun.
2003, 68, 644-662
https://doi.org/10.1135/cccc20030644
A Proposed Mechanism of [closo-CB11H12]- Formation by Dichlorocarbene Insertion Into [nido-B11H14]-. A Computational Study by Density Functional Theory
Pawel Rempala and Josef Michl*
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, U.S.A.
References
1. Chem. Rev. (Washington, D. C.) 1993, 93, 927.
< S. H.: https://doi.org/10.1021/cr00019a005>
2. Acc. Chem. Res. 1998, 31, 133.
< C. A.: https://doi.org/10.1021/ar970230r>
3. Chem. Innov. 2001, 31, 23.
B. T., Zharov I., Michl J.:
4. Collect. Czech. Chem. Commun. 2001, 66, 1238.
< A., King B. T., Rudolph J., Rao P., Noll B. C., Michl J.: https://doi.org/10.1135/cccc20011238>
5. Körbe S., Franken A., Michl J.: Unpublished results.
6. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
7. Phys. Rev. B: Condens. Matter 1988, 37, 785.
< C., Yang W., Parr R. G.: https://doi.org/10.1103/PhysRevB.37.785>
8. Chem. Phys. Lett. 1989, 157, 200.
< B., Savin A., Stoll H., Preuss H.: https://doi.org/10.1016/0009-2614(89)87234-3>
9. J. Chem. Phys. 1971, 54, 724.
< R., Hehre W. J., Pople J. A.: https://doi.org/10.1063/1.1674902>
10. J. Chem. Phys. 1972, 56, 2257.
< W. J., Ditchfield R., Pople J. A.: https://doi.org/10.1063/1.1677527>
11. Mol. Phys. 1974, 27, 209.
< P. C., Pople J. A.: https://doi.org/10.1080/00268977400100171>
12. Chem. Phys. Lett. 1980, 76, 163.
< M. S.: https://doi.org/10.1016/0009-2614(80)80628-2>
13. Theor. Chim. Acta 1973, 28, 213.
< P. C., Pople J. A.: https://doi.org/10.1007/BF00533485>
14. The functional was used as implemented in Gaussian 98 (ref.17): 0.5ExHF + 0.5ExLSDA + 0.5ΔExBECKE88 + EcLYP, where ExHF is Hartree–Fock exchange term, ExLSDA is the local spin density approximation exchange functional, ExBECKE88 is Becke’s 1988 functional (Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098), and EcLYP is the correlation functional of Lee, Yang, and Parr (ref.7).
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
15. Chem. Phys. Lett. 1992, 197, 499.
< P. M. W., Johnson B. G., Pople J. A., Frisch M. J.: https://doi.org/10.1016/0009-2614(92)85807-M>
16. J. Phys. Chem. 1993, 97, 4392.
< N. C., Murray C. W., Amos R. D.: https://doi.org/10.1021/j100119a023>
17. Frisch M. J. et al.: Gaussian 98, Revision A.9. Gaussian, Inc., Pittsburgh (PA) 1998.
18. J. Mol. Struct. (THEOCHEM) 1988, 169, 41.
< J. E., Weinhold F.: https://doi.org/10.1016/0166-1280(88)80248-3>
19. Chem. Rev. (Washington, D. C.) 1988, 88, 899.
< A. E., Curtiss L. A., Weinhold F.: https://doi.org/10.1021/cr00088a005>
20. J. Am. Chem. Soc. 1936, 58, 1486.
< L.: https://doi.org/10.1021/ja01299a050>
21. J. Am. Chem. Soc. 1991, 113, 4776.
< M. W., Frisch M. J., Wiberg K. B.: https://doi.org/10.1021/ja00013a010>
22. J. Am. Chem. Soc. 1950, 72, 2438.
< J.: https://doi.org/10.1021/ja01162a024>
23. Kirmse W.: Carbene Chemistry, 2nd ed., Chapter IV, p. 129. Academic Press, New York 1971.
24. Inorg. Chem. 1988, 27, 2398.
< T. D., Krause J. A., Shore S. G.: https://doi.org/10.1021/ic00287a006>
25. J. Am. Chem. Soc. 1993, 115, 7747.
< P., Eisenstein O., Michos D., Luo X. L., Siedle A. R., Wisnieski L., Zilm K. W., Crabtree R. H.: https://doi.org/10.1021/ja00070a020>
26. Tetrahedron Lett. 1979, 49, 4721.
< R. A., Munjal R. C.: https://doi.org/10.1016/S0040-4039(01)86693-4>
27. Acc. Chem. Res. 1980, 13, 58.
< R. A.: https://doi.org/10.1021/ar50146a005>
28. Inorg. Chem. 1967, 6, 1199.
< C. J., Jr.: https://doi.org/10.1021/ic50052a029>
29. J. Am. Chem. Soc. 2000, 122, 4781.
< M. L., Wang Z.-X., Schleyer P. v. R.: https://doi.org/10.1021/ja994490a>
30. Inorg. Chem. 1983, 22, 3843.
< R. L., Jasperse C. P.: https://doi.org/10.1021/ic00168a005>