Collect. Czech. Chem. Commun. 2003, 68, 627-643
https://doi.org/10.1135/cccc20030627

Calculation of Thermodynamical, Transport and Structural Properties of Neon in Liquid and Supercritical Phases by Molecular Dynamics Simulations Using an Accurate ab initio Pair Potential

Muthusamy Venkatraja, Markus G. Müllera, Hanspeter Hubera,* and Robert J. Gdanitzb

a Departement Chemie, Universität Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
b Department of Chemistry, University of Utah, 315 S. 1400 E, Rm 2020, Salt Lake City, UT 84112, U.S.A.

References

1. Clementi E.: Modern Techniques in Computational Chemistry MOTECC-90. ESCOM, Leiden 1990.
2. Clementi E., Corongiu G., Bahattacharya D., Feuston B., Frye D., Preiskorn A., Rizzo A., Xue W.: Chem. Rev. (Washington, D. C.) 1991, 91, 679. <https://doi.org/10.1021/cr00005a003>
3. Matsuoka O., Clementi E., Yoshimine M.: J. Chem. Phys. 1976, 64, 1351. <https://doi.org/10.1063/1.432402>
4. Niesar U., Corongiu G., Huang M.-J., Dupuis M., Clementi E.: Int. J. Quantum Chem. Quantum Chem. Symp. 1989, 23, 421.
5. Niesar U., Corongiu G., Clementi E., Kneller G. R., Bhattacharya D. K.: J. Phys. Chem. 1990, 94, 7949. <https://doi.org/10.1021/j100383a037>
6. Corongiu G.: Int. J. Quantum Chem. 1992, 42, 1209. <https://doi.org/10.1002/qua.560420509>
7. Eggenberger R., Gerber S., Huber H., Searles D.: Chem. Phys. 1991, 156, 395. <https://doi.org/10.1016/0301-0104(91)89008-X>
8. Eggenberger R., Gerber S., Huber H., Searles D., Welker M.: Mol. Phys. 1992, 76, 1213. <https://doi.org/10.1080/00268979200101991>
9. Eggenberger R., Gerber S., Huber H., Searles D., Welker M.: Chem. Phys. 1992, 164, 321. <https://doi.org/10.1016/0301-0104(92)87071-G>
10. Eggenberger R., Gerber S., Huber H., Searles D., Welker M.: J. Phys. Chem. 1993, 97, 1980. <https://doi.org/10.1021/j100111a041>
11. Eggenberger R., Gerber S., Huber H., Searles D., Welker M.: J. Chem. Phys. 1993, 99, 9163. <https://doi.org/10.1063/1.465530>
12. Eggenberger R., Gerber S., Huber H., Welker M.: Mol. Phys. 1994, 82, 689. <https://doi.org/10.1080/00268979400100494>
13. Eggenberger R., Huber H., Welker M.: Chem. Phys. 1994, 187, 317. <https://doi.org/10.1016/0301-0104(94)89014-5>
14. Huber H., Dyson A. J., Kirchner B.: Chem. Soc. Rev. 1999, 28, 121. <https://doi.org/10.1039/a803457e>
15. Ermakova E., Solca J., Huber H., Marx D.: Chem. Phys. Lett. 1995, 246, 204. <https://doi.org/10.1016/0009-2614(95)01108-L>
16. Ermakova E., Solca J., Steinebrunner G., Huber H.: Chem. Eur. J. 1998, 4, 377. <https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<377::AID-CHEM377>3.0.CO;2-8>
17. Kirchner B., Ermakova E., Solca J., Huber H.: Chem. Eur. J. 1998, 4, 383. <https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<383::AID-CHEM383>3.0.CO;2-K>
18. Vogt P. S., Liapine R., Kirchner B., Dyson A. J., Huber H., Marcelli G., Sadus R.: Phys. Chem. Chem. Phys. 2001, 3, 1297. <https://doi.org/10.1039/b008061f>
19. Leonhard K., Deiters U. K.: Mol. Phys. 2000, 98, 1603. <https://doi.org/10.1080/00268970009483367>
20. Gdanitz R. J.: Chem. Phys. Lett. 2001, 348, 67. <https://doi.org/10.1016/S0009-2614(01)01088-0>
21. Rabinovich V. A.,Vasserman A. A., Nedostup V. I., Veksler L. S.: Thermophysical Properties of Neon, Argon, Krypton, and Xenon. Hemisphere Publishing Corporation, Washington 1988.
22. Le Neindre B., Garrabos Y., Tufeu R.: Physica A (Amsterdam) 1989, 156, 512. <https://doi.org/10.1016/0378-4371(89)90137-4>
23. Bellissent-Funel M. C., Buontempo U., Filabozzi A., Petrillo C., Ricci F. P.: Phys. Rev. B: Condens. Matter 1992, 45, 4605. <https://doi.org/10.1103/PhysRevB.45.4605>
24. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Clarendon Press, Oxford 1987.
25. Thompson S. M.: CCP5 Program Library 1980.
26. Cybulski S. M., Toczylowski R. R.: J. Chem. Phys. 1999, 111, 10520. <https://doi.org/10.1063/1.480430>
27. Aziz R. A., Slaman M. J.: Chem. Phys. 1989, 130, 187. <https://doi.org/10.1016/0301-0104(89)87048-X>
28. Slaman M. J., Aziz R. A.: Chem. Eng. Commun. 1991, 104, 139. <https://doi.org/10.1080/00986449108910880>
29. Tanaka Y., Yoshino K.: J. Chem. Phys. 1972, 57, 2964. <https://doi.org/10.1063/1.1678691>
30. Le Roy R. J., Klein M. L., McGee I. J.: Mol. Phys. 1974, 28, 587. <https://doi.org/10.1080/00268977400103121>
31. Hirschfelder J. O., Curtiss C. F., Bird R. B.: Molecular Theory of Gases and Liquids. Wiley, New York 1954.
32. Gibbons R. M.: Cryogenics 1969, 9, 251. <https://doi.org/10.1016/0011-2275(69)90231-8>
33. Dymond J. H., Smith E. B.: The Virial Coefficients of Gases, A Critical Compilation. Clarendon Press, Oxford 1969.
34. Ree F. H.: J. Phys. Chem. 1983, 87, 2846. <https://doi.org/10.1021/j100238a029>
35. Barker J. A., Fisher R. A., Watts R. O.: Mol. Phys. 1971, 21, 657. <https://doi.org/10.1080/00268977100101821>
36. Michels A., Wassenaar T., Wolkers G. J.: Physica 1965, 31, 237. <https://doi.org/10.1016/0031-8914(65)90030-3>
37. Maslennikova V. Y., Egorov A. N., Tsiklis D. S.: Sov. Phys. Dokl. 1976, 21, 440.
38. Kortbeek P. J., Biswas S. N., Schouten J. A.: Int. J. Thermophys. 1988, 9, 803. <https://doi.org/10.1007/BF00503246>
39. Naugle D. G.: J. Chem. Phys. 1972, 56, 5730. <https://doi.org/10.1063/1.1677099>
40. Vermesse J., Vidal D.: Acad. Sci., Ser. II 1975, 280, 749.
41. Trappeniers N. J., Botzen A., Van den Berg H. R., Van Oosten J.: Physica 1964, 30, 985. <https://doi.org/10.1016/0031-8914(64)90231-9>