Collect. Czech. Chem. Commun. 2003, 68, 509-528
https://doi.org/10.1135/cccc20030509

The Rovibrational Dependence of the 14N Nuclear Quadrupole Coupling Constants in the X2Σ+ and B2Σ+ States of CN from the Multireference CI Approach

Rudolf Poláka,* and Jiří Fišerb

a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic
b Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic

References

1. Combi M. R.: Astrophys. J. 1980, 241, 830. <https://doi.org/10.1086/158394>
2. Wyckoff S., Kleine M., Peterson B. A., Wehinger P. A., Ziurys L. M.: Astrophys. J. 2000, 535, 991. <https://doi.org/10.1086/308863>
3. Jefferts K. B., Penzias A. A., Wilson R. W.: Astrophys. J. 1970, 161, L87. <https://doi.org/10.1086/180576>
4. Penzias A. A., Wilson R. W., Jefferts K. B.: Phys. Rev. Lett. 1974, 32, 701. <https://doi.org/10.1103/PhysRevLett.32.701>
5. Dixon T. A., Woods R. C.: J. Chem. Phys. 1977, 67, 3956. <https://doi.org/10.1063/1.435412>
6. Evenson K. M., Dunn J. L., Broida H. P.: Phys. Rev. 1964, 136, A1566. <https://doi.org/10.1103/PhysRev.136.A1566>
7. Radford H. E.: Phys. Rev. 1964, 136, A1571. <https://doi.org/10.1103/PhysRev.136.A1571>
8. Klisch E., Klaus T., Belov S. P., Winnewisser G., Herbst E.: Astron. Astrophys. 1995, 304, L5.
9. Li X., Paldus J.: Mol. Phys. 1998, 94, 41. <https://doi.org/10.1080/00268979809482293>
10. Peris G., Rajadell F., Li X., Planelles J., Paldus J.: Mol. Phys. 1998, 94, 235. <https://doi.org/10.1080/00268979809482312>
11. Li X., Paldus J.: Mol. Phys. 2002, 98, 1185. <https://doi.org/10.1080/00268970050080546>
12. Neogrády P., Medveď M., Černušák I., Urban M.: Mol. Phys. 2002, 100, 541. <https://doi.org/10.1080/00268970110095660>
13. Bauschlicher C. W., Jr., Langhoff S. R., Taylor P. R.: Astrophys. J. 1988, 332, 531. <https://doi.org/10.1086/166675>
14. Pradhan A. D., Partridge H., Bauschlicher C. W., Jr.: J. Chem. Phys. 1994, 101, 3857. <https://doi.org/10.1063/1.467503>
15. Feller D., Sordo J. A.: J. Chem. Phys. 2000, 113, 485. <https://doi.org/10.1063/1.481827>
16. Sordo J. A.: J. Chem. Phys. 2001, 114, 1974. <https://doi.org/10.1063/1.1335617>
17. Green S.: J. Chem. Phys. 1972, 57, 4694. <https://doi.org/10.1063/1.1678138>
18. Urban M., Neogrády P., Raab J., Diercksen G. H. F.: Collect. Czech. Chem. Commun. 1998, 63, 1409. <https://doi.org/10.1135/cccc19981409>
19. Knowles P. J., Werner H.-J., Hay P. J., Cartwright D. C.: J. Chem. Phys. 1988, 89, 7334. <https://doi.org/10.1063/1.455264>
20. Lee T. J., Dateo C. E.: Spectrochim. Acta, Part A 1999, 55, 739. <https://doi.org/10.1016/S1386-1425(98)00276-5>
21. Fernández B., Jørgensen P., Simons J.: J. Chem. Phys. 1993, 98, 7012. <https://doi.org/10.1063/1.464744>
22. Sugden T. M., Kenney C. N.: Microwave Spectroscopy of Gases. Van Nostrand, London 1965.
23. Townes C. H., Dailey B. P.: J. Chem. Phys. 1949, 17, 782. <https://doi.org/10.1063/1.1747400>
24. Gordy W.: Discuss. Faraday Soc. 1955, 19, 14. <https://doi.org/10.1039/df9551900014>
25. Purcell K. F.: J. Chem. Phys. 1968, 48, 5735. <https://doi.org/10.1063/1.1668669>
26. Cummins P. L., Bacskay G. B., Hush N. S., Ahlrichs R.: J. Chem. Phys. 1987, 86, 6908. <https://doi.org/10.1063/1.452390>
27. Bacis R., Broyer M., Churassy S., Vergès J., Vigué J.: J. Chem. Phys. 1980, 73, 2641. <https://doi.org/10.1063/1.440477>
28. Ubachs W., Meyer G., ter Meulen J. J., Dymanus A.: J. Mol. Spectrosc. 1986, 115, 88. <https://doi.org/10.1016/0022-2852(86)90278-X>
29. Durand A., Loison J. C., Bazalgette G., Gangler E., Dalby F. W., Vigué J.: Chem. Phys. 1994, 181, 209. <https://doi.org/10.1016/0301-0104(94)85025-9>
30. Fišer J., Vojtík J.: Chem. Phys. 1994, 182, 217. <https://doi.org/10.1016/0301-0104(94)00042-5>
31. Vojtík J., Fišer J.: Chem. Phys. 1997, 218, 13. <https://doi.org/10.1016/S0301-0104(97)00061-X>
32. Polák R., Fišer J.: Spectrochim. Acta, Part A 2002, 58, 2029. <https://doi.org/10.1016/S1386-1425(01)00653-9>
33. Paidarová I., Vojtík J., Češpiva L., Šavrda J., Špirko V.: Int. J. Quantum Chem. 1990, 38, 283. <https://doi.org/10.1002/qua.560380224>
34. Vojtík J., Češpiva L., Paidarová I., Šavrda J.: J. Mol. Struct. (THEOCHEM) 1991, 227, 111. <https://doi.org/10.1016/0166-1280(91)85277-E>
35. Werner H.-J., Knowles P. J.: J. Chem. Phys. 1988, 89, 5803. <https://doi.org/10.1063/1.455556>
36. Knowles P. J., Werner H.-J.: Chem. Phys. Lett. 1988, 145, 514. <https://doi.org/10.1016/0009-2614(88)87412-8>
37. Werner H.-J., Knowles P. J., with contributions from Amos R. D., Bernhardsson A., Berning A., Celani P., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Hampel C., Hetzer G., Korona T., Lindh R., Lloyd A. W., McNicholas S. J., Manby F. R., Meyer W., Mura M. E., Nicklass A., Palmieri P., Pitzer R., Rauhut G., Schütz M., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T.: MOLPRO 2000.1. Universität Stuttgart and University of Birmingham 2000.
38. Knowles P. J., Werner H.-J.: Chem. Phys. Lett. 1985, 115, 259. <https://doi.org/10.1016/0009-2614(85)80025-7>
39. Werner H.-J., Knowles P. J.: J. Chem. Phys. 1985, 82, 5053. <https://doi.org/10.1063/1.448627>
40. Kendall R. A., Dunning T. H., Jr., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
41. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
42. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1995, 103, 4572. <https://doi.org/10.1063/1.470645>
43. Andersson K., Blomberg M. R. A., Fülscher M. P., Karlström G., Lindh R., Malmqvist P.-Å., Neogrády P., Olsen J., Roos B. O., Sadlej A. J., Schütz M., Seijo L., Serrano-Andrés L., Siegbahn P. E. M., Widmark P.-O.: MOLCAS-4. Lund University, Lund 1997.
44. Langhoff S. R., Davidson E. R.: Int. J. Quantum Chem. 1974, 8, 61. <https://doi.org/10.1002/qua.560080106>
45. Blomberg M. R. A., Siegbahn P. E. M.: J. Chem. Phys. 1983, 78, 5682. <https://doi.org/10.1063/1.445449>
46. Cohen H. D., Roothaan C. C. J.: J. Chem. Phys. 1965, 43, S34. <https://doi.org/10.1063/1.1701512>
47. Diercksen G. H. F., Roos B. O., Sadlej A. J.: Chem. Phys. 1981, 59, 29. <https://doi.org/10.1016/0301-0104(81)80082-1>
48. Cooley J. W.: Math. Comput. 1961, 15, 363.
49. deBoor C.: A Practical Guide to Splines. Springer, Berlin 1978.
50. Tokman M., Sundholm D., Pyykkö P., Olsen J.: Chem. Phys. Lett. 1997, 265, 60. <https://doi.org/10.1016/S0009-2614(96)01433-9>
51. Polák R., Fišer J.: J. Mol. Struct. (THEOCHEM) 2002, 584, 69. <https://doi.org/10.1016/S0166-1280(02)00021-0>
52. Buckingham A. D.: J. Chem. Phys. 1962, 36, 3096. <https://doi.org/10.1063/1.1732430>
53. Thomson R., Dalby F. W.: Can. J. Phys. 1968, 46, 2815. <https://doi.org/10.1139/p68-652>
54. Li X., Paldus J.: Mol. Phys. 2000, 98, 1185. <https://doi.org/10.1080/00268970050080546>
55. Huber K. P., Herzberg G.: Molecular Spectra and Molecular Structure, Vol. 4. Van Nostrand Reinhold, New York 1979.
56. Huang Y., Barts S. A., Halpern J. B.: J. Phys. Chem. 1992, 96, 425. <https://doi.org/10.1021/j100180a079>
57. Costes M., Naulin C., Dorthe G.: Astron. Astrophys. 1990, 232, 270.
58. Diercksen G. H. F., Kraemer W. P., Sadlej A. J.: Chem. Phys. Lett. 1981, 82, 117. <https://doi.org/10.1016/0009-2614(81)85119-6>
59. Olsen L., Christiansen O., Hemmingsen L., Sauer S. P. A., Mikkelsen K. V.: J. Chem. Phys. 2002, 116, 1424. <https://doi.org/10.1063/1.1428340>