Collect. Czech. Chem. Commun. 2003, 68, 463-488
https://doi.org/10.1135/cccc20030463

On the Performance of Bond Functions and Basis Set Extrapolation Techniques in High-Accuracy Calculations of Interatomic Potentials. A Helium Dimer Study

Małgorzata Jeziorskaa,b, Robert Bukowskib, Wojciech Cencekb, Michał Jaszuńskic, Bogumił Jeziorskia,b,* and Krzysztof Szalewiczb

a Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
b Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, U.S.A.
c Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01 224 Warszawa, Poland

References

1. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
2. Kendall R. A., Dunning T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
3. Woon D. E., Dunning T. H.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
4. van Mourik T., Wilson A. K., Dunning T. H.: Mol. Phys. 1999, 96, 529. <https://doi.org/10.1080/00268979909482990>
5. Szalewicz K., Cole S. J., Kolos W., Bartlett R. J.: J. Chem. Phys. 1988, 89, 3662. <https://doi.org/10.1063/1.454886>
6. Sadlej A. J.: Collect. Czech. Chem. Commun. 1988, 53, 1995. <https://doi.org/10.1135/cccc19881995>
7. van Duijneveldt-van de Rijdt J. G. C. M., van Duijneveldt F. B.: J. Mol. Struct. (THEOCHEM) 1982, 89, 185. <https://doi.org/10.1016/0166-1280(82)80164-4>
8. Jeziorski B., van Hemert M.: Mol. Phys. 1976, 31, 713. <https://doi.org/10.1080/00268977600100551>
9. Chalasinski G., Jeziorski B., Andzelm J., Szalewicz K.: Mol. Phys. 1977, 33, 971. <https://doi.org/10.1080/00268977700100881>
10. Szalewicz K., Jeziorski B.: Mol. Phys. 1979, 38, 191. <https://doi.org/10.1080/00268977900101601>
11. Burton P. G.: J. Chem. Phys. 1977, 67, 4696. <https://doi.org/10.1063/1.434636>
12. Gutowski M., Verbeek J., van Lenthe J. H., Chalasinski G.: Chem. Phys. 1987, 111, 271. <https://doi.org/10.1016/0301-0104(87)80140-4>
13a. Tao F.-M., Pan Y.-K.: J. Chem. Phys. 1991, 95, 3582. <https://doi.org/10.1021/j100162a028>
13b. Tao F.-M., Pan Y.-K.: J. Chem. Phys. 1991, 95, 9811. <https://doi.org/10.1021/j100177a039>
13c. Tao F.-M., Pan Y.-K.: J. Chem. Phys. 1991, 96, 5815. <https://doi.org/10.1021/j100193a031>
14. Tao F. M., Pan Y. K.: J. Chem. Phys. 1992, 97, 4989. <https://doi.org/10.1063/1.463852>
15a. Tao F.-M.: J. Chem. Phys. 1993, 98, 3049. <https://doi.org/10.1063/1.464131>
15b. Tao F.-M., Klemperer W.: J. Chem. Phys. 1993, 99, 5976. <https://doi.org/10.1063/1.465896>
15c. Chang H.-C., Tao F.-M., Klemperer W., Healey C., Hutson J. M.: J. Chem. Phys. 1993, 99, 9337. <https://doi.org/10.1063/1.465518>
16a. Tao F.-M.: J. Chem. Phys. 1994, 100, 3645. <https://doi.org/10.1063/1.466352>
16b. Tao F.-M., Klemperer W.: J. Chem. Phys. 1994, 101, 1129. <https://doi.org/10.1063/1.468478>
17. Burcl R., Chalasinski G., Bukowski R., Szczesniak M. M.: J. Chem. Phys. 1995, 103, 1498. <https://doi.org/10.1063/1.469771>
18. Williams H. L., Mas E. M., Szalewicz K., Jeziorski B.: J. Chem. Phys. 1995, 103, 7374. <https://doi.org/10.1063/1.470309>
19. Torheyden M., Jansen G.: Theor. Chem. Acc. 2000, 104, 370. <https://doi.org/10.1007/s002140000152>
20. Cencek W., Bukowski R., Jaszunski M., Jeziorska M., Jeziorski B., Szalewicz K.: Unpublished results.
21. Bukowski R., Jeziorski B., Szalewicz K.: J. Chem. Phys. 1999, 110, 4165. <https://doi.org/10.1063/1.479109>
22. Aziz R. A., Janzen A. R., Moldover M. R.: Phys. Rev. Lett. 1995, 74, 1586. <https://doi.org/10.1103/PhysRevLett.74.1586>
23. Hurly J. J., Moldover M. R.: J. Res. Natl. Inst. Stand. Technol. 2000, 105, 667. <https://doi.org/10.6028/jres.105.054>
24. Toennies P., Vilesov A. F.: Annu. Rev. Phys. Chem. 1998, 49, 1. <https://doi.org/10.1146/annurev.physchem.49.1.1>
25. Callegari C., Lehmann K. K., Schmied R., Scoles G.: J. Chem. Phys. 2001, 115, 10090. <https://doi.org/10.1063/1.1418746>
26. Moldover M. R.: J. Res. Natl. Inst. Stand. Technol. 1998, 103, 167. <https://doi.org/10.6028/jres.103.011>
27. Buckley T. J., Hamelin J., Moldover M. R.: Rev. Sci. Instrum. 2000, 71, 2914. <https://doi.org/10.1063/1.1150716>
28. van Mourik T., van Lenthe J. H.: J. Chem. Phys. 1995, 102, 7479. <https://doi.org/10.1063/1.469060>
29. Klopper W., Noga J.: J. Chem. Phys. 1995, 103, 6127. <https://doi.org/10.1063/1.470440>
30. Bukowski R., Jeziorski B., Szalewicz K.: J. Chem. Phys. 1996, 101, 3306. <https://doi.org/10.1063/1.471093>
31. Williams H. L., Korona T., Bukowski R., Jeziorski B., Szalewicz K.: Chem. Phys. Lett. 1996, 262, 431. <https://doi.org/10.1016/0009-2614(96)01078-0>
32. Jeziorski B., Moszynski R., Szalewicz K.: Chem. Rev. (Washington, D. C.) 1994, 94, 1887. <https://doi.org/10.1021/cr00031a008>
33. Korona T., Williams H. L., Bukowski R., Jeziorski B., Szalewicz K.: J. Chem. Phys. 1997, 106, 5109. <https://doi.org/10.1063/1.473556>
34. Komasa J., Rychlewski J.: Mol. Phys. 1997, 91, 909. <https://doi.org/10.1080/00268979709482781>
35. van Mourik T., Dunning T. H.: J. Chem. Phys. 1999, 111, 9246. <https://doi.org/10.1063/1.479839>
36. Gdanitz R. J.: Mol. Phys. 1999, 96, 1423.
37. Komasa J.: J. Chem. Phys. 1999, 110, 7909. <https://doi.org/10.1063/1.478696>
38. van de Bovenkamp J., van Duijneveldt F. B.: J. Chem. Phys. 1999, 110, 11141. <https://doi.org/10.1063/1.479057>
39. Gdanitz R. J.: J. Chem. Phys. 2000, 113, 5145. <https://doi.org/10.1063/1.1290001>
40. Gdanitz R. J.: Mol. Phys. 2001, 99, 923. <https://doi.org/10.1080/00268970010020609>
41. Klopper W.: J. Chem. Phys. 2001, 115, 761. <https://doi.org/10.1063/1.1379577>
42. Anderson J. B.: J. Chem. Phys. 2001, 115, 4546. <https://doi.org/10.1063/1.1390512>
43. Chalasinski G., Szczesniak M. M.: Chem. Rev. (Washington, D. C.) 1994, 94, 1723. <https://doi.org/10.1021/cr00031a001>
44. Purvis G. G., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
45. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
46. Burda J. V., Zahradník R., Hobza P., Urban M.: Mol. Phys. 1996, 89, 425. <https://doi.org/10.1080/00268979609482483>
47. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041. <https://doi.org/10.1063/1.449067>
48. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
49. Čársky P., Urban M.: Ab Initio Calculations. Methods and Applications in Chemistry, p. 93. Springer-Verlag, Berlin 1980.
50. Jeziorski B., Monkhorst H. J., Szalewicz K., Zabolitzky J. G.: J. Chem. Phys. 1984, 81, 368. <https://doi.org/10.1063/1.447315>
51. Hill R. N.: J. Chem. Phys. 1985, 83, 1173. <https://doi.org/10.1063/1.449481>
52. Kutzelnigg W.: Theor. Chim. Acta 1985, 68, 445. <https://doi.org/10.1007/BF00527669>
53. Kutzelnigg W., Morgan III J. D.: J. Chem. Phys. 1992, 96, 4484. <https://doi.org/10.1063/1.462811>
54. Klopper W., Bak K. L., Jørgensen P., Olsen J., Helgaker T.: J. Phys. B: At., Mol. Opt. Phys. 1999, 32, R103. <https://doi.org/10.1088/0953-4075/32/13/201>
55. Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory, p. 322. J. Wiley, Chichester 2000.
56. Lee J. S., Park S. Y.: J. Chem. Phys. 2000, 112, 10746. <https://doi.org/10.1063/1.481718>
57. Varandas A. J. C.: J. Chem. Phys. 2000, 113, 8880. <https://doi.org/10.1063/1.1319644>
58. Butler P. R., Ellis A. M.: Mol. Phys. 2001, 99, 525. <https://doi.org/10.1080/00268970010018855>
59. Lee J. S.: Chem. Phys. Lett. 2001, 339, 133. <https://doi.org/10.1016/S0009-2614(01)00317-7>
60. Klopper W.: Mol. Phys. 2001, 99, 481. <https://doi.org/10.1080/00268970010017315>
61. Neogrády P., Medved M., Černušák I., Urban M.: Mol. Phys. 2002, 100, 541. <https://doi.org/10.1080/00268970110095660>
62. Helgaker T., Klopper W., Koch H., Noga J.: J. Chem. Phys. 1997, 106, 9639. <https://doi.org/10.1063/1.473863>
63. Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.: Chem. Phys. Lett. 1998, 286, 243. <https://doi.org/10.1016/S0009-2614(98)00111-0>
64. Szalewicz K., Jeziorski B., Monkhorst H. J., Zabolitzky J. G.: J. Chem. Phys. 1983, 78, 1420. <https://doi.org/10.1063/1.444884>
65. Kutzelnigg W., Klopper W.: J. Chem. Phys. 1991, 94, 1985. <https://doi.org/10.1063/1.459921>
66. Klopper W., Kutzelnigg W.: J. Chem. Phys. 1991, 94, 2020. <https://doi.org/10.1063/1.459923>
67. Partridge H., Bauschlicher C. W.: Mol. Phys. 1999, 96, 705. <https://doi.org/10.1080/00268979909483006>
68. Werner H.-J., Knowles P. J.: MOLPRO, A Package of ab initio Programs, with contributions from R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, R. Tarroni and T. Thorsteinsson.
69. Olsen J.: LUCIA, A Full CI, General Active Space Program, with contributions from H. Larsen and M. Fulscher.
70. Helgaker T., Jensen H. J. Aa., Jørgensen P., Olsen J., Ruud K., Aagren H., Auer A. A., Bak K. L., Bakken V., Christiansen O., Coriani S., Dahle P., Dalskov E. K., Enevoldsen T., Fernandez B., Hättig C., Hald K., Halkier A., Heiberg H., Hettema H., Jonsson D., Kirpekar S., Kobayashi R., Koch H., Mikkelsen K. V., Norman P., Packer M. J., Pedersen T. B., Ruden T. A., Sanchez A., Saue T., Sauer S. P. A., Schimmelpfennig B., Sylvester-Hvid K. O., Taylor P. R., Vahtras O.: DALTON, An ab initio Electronic Structure Program, Release 1.2. 2001. See http://www.kjemi.uio.no/software/dalton/dalton.html.
71. Boys S. F., Bernardi F.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
72. Martin J. M. L.: Chem. Phys. Lett. 1996, 259, 669. <https://doi.org/10.1016/0009-2614(96)00898-6>
73. Klopper W.: Unpublished results cited in ref.35.
74. Huiszoon C., Caffarel M.: J. Chem. Phys. 1996, 104, 4621. <https://doi.org/10.1063/1.471209>
75. Komasa J., Rychlewski J.: Chem. Phys. Lett. 1996, 249, 253. <https://doi.org/10.1016/0009-2614(95)01392-X>
76. Jeziorska M., Bukowski R., Cencek W., Jaszunski M., Jeziorski B., Szalewicz K.: Unpublished results.