Collect. Czech. Chem. Commun. 2003, 68, 340-356
https://doi.org/10.1135/cccc20030340

Towards Universal R12 Consistent Basis Sets

Jozef Nogaa,b,* and Pierre Valironb

a Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovakia
b Laboratoire d'Astrophysique, UMR 5571 CNRS, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France

References

1. Čársky P., Urban M.: Ab Initio Calculations. Methods and Applications in Chemistry, Lecture Notes in Chemistry, Vol. 16. Springer Verlag, Berlin, 1980..
2. Löwdin P. O.: Adv. Chem. Phys. 1959, 2, 207. <https://doi.org/10.1002/9780470143483.ch7>
3. Čársky P., Hubač I.: Chem. Listy 1977, 71, 673.
4. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
5. Čížek J.: Adv. Chem. Phys. 1969, 14, 35.
6. Paldus J., Čížek J.: Adv. Quantum Chem. 1975, 9, 105. <https://doi.org/10.1016/S0065-3276(08)60040-4>
7. Hubač I., Čársky P.: Top. Curr. Chem. 1978, 75, 97. <https://doi.org/10.1007/BFb0048837>
8. Hubač I., Kvasnička V., Holubec A.: Chem. Phys. Lett. 1973, 23, 381. <https://doi.org/10.1016/0009-2614(73)85103-6>
9. Kvasnička V., Hubač I.: J. Chem. Phys. 1974, 60, 4483. <https://doi.org/10.1063/1.1680927>
10. Hubač I., Urban M.: Theor. Chim. Acta 1977, 45, 185. <https://doi.org/10.1007/BF02401399>
11. Kvasnička V., Holubec A., Hubač I.: Chem. Phys. Lett. 1974, 24, 361. <https://doi.org/10.1016/0009-2614(74)85278-4>
12. Urban M., Kellö V., Hubač I.: Chem. Phys. Lett. 1977, 51, 170. <https://doi.org/10.1016/0009-2614(77)85378-5>
13. Urban M., Černušák I., Kellö V., Noga J. in: Method in Computational Chemistry (S. Wilson, Ed.), Vol. I, p. 117. Plenum Press, New York 1987.
14. Bunge C. F.: Theor. Chim. Acta 1970, 16, 126. <https://doi.org/10.1007/BF00572782>
15. Carroll D. P., Silverstone H. J., Metzger R. M.: J. Chem. Phys. 1979, 71, 4142. <https://doi.org/10.1063/1.438187>
16. Schwartz C.: Phys. Rev. 1962, 126, 1015. <https://doi.org/10.1103/PhysRev.126.1015>
17. Hill R. N.: J. Chem. Phys. 1985, 83, 1173. <https://doi.org/10.1063/1.449481>
18. Kutzelnigg W., Morgan J. D.: J. Chem. Phys. 1992, 96, 4484. <https://doi.org/10.1063/1.462811>
19. Kato T.: Commun. Pure Appl. Math. 1957, 10, 151. <https://doi.org/10.1002/cpa.3160100201>
20. Boys S. F.: Proc. R. Soc. London, Ser. A 1950, 200, 542. <https://doi.org/10.1098/rspa.1950.0036>
21. Kutzelnigg W.: Int. J. Quantum Chem. 1994, 51, 447. <https://doi.org/10.1002/qua.560510612>
22. Huzinaga S.: Comput. Phys. Rep. 1985, 2, 279. <https://doi.org/10.1016/0167-7977(85)90003-6>
23. Wilson S. in: Ab Initio Methods in Quantum Chemistry (K. P. Lawley, Ed.), p. 439. Wiley, New York 1987.
24. Urban M.: Chem. Listy 1971, 65, 690.
25. Urban M.: Collect. Czech. Chem. Commun. 1971, 36, 3482. <https://doi.org/10.1135/cccc19713482>
26. Urban M.: Collect. Czech. Chem. Commun. 1973, 38, 2043. <https://doi.org/10.1135/cccc19732043>
27. Urban M., Polák R.: Collect. Czech. Chem. Commun. 1974, 39, 2567. <https://doi.org/10.1135/cccc19742567>
28. Urban M., Kellö V., Čársky P.: Theor. Chim. Acta 1977, 45, 205. <https://doi.org/10.1007/BF02401401>
29. Urban M., Pavlík S., Kožár T.: Chem. Zvesti 1977, 31, 165.
30. Čársky P., Kozák I., Kellö V., Urban M.: Collect. Czech. Chem. Commun. 1977, 42, 1460. <https://doi.org/10.1135/cccc19771460>
31. Hylleraas E. A.: Z. Phys. 1929, 54, 347. <https://doi.org/10.1007/BF01375457>
32. Hylleraas E. A.: Adv. Quantum Chem. 1964, 1, 1. <https://doi.org/10.1016/S0065-3276(08)60373-1>
33. Boys S. F.: Proc. R. Soc. London, Ser. A 1960, 258, 402. <https://doi.org/10.1098/rspa.1960.0195>
34. Singer K.: Proc. R. Soc. London, Ser. A 1960, 258, 412. <https://doi.org/10.1098/rspa.1960.0196>
35a. Szalewicz K., Jeziorski B., Monkhorst H. J., Zabolitzky J. G.: J. Chem. Phys. 1983, 78, 1420. <https://doi.org/10.1063/1.444884>
35b. Szalewicz K., Jeziorski B., Monkhorst H. J., Zabolitzky J. G.: J. Chem. Phys. 1983, 79, 5543. <https://doi.org/10.1063/1.445672>
36. Bukowski R., Jeziorski B., Szalewicz K.: J. Chem. Phys. 1999, 110, 4165. <https://doi.org/10.1063/1.479109>
37. Rychlewski J.: Adv. Quantum Chem. 1998, 31, 173. <https://doi.org/10.1016/S0065-3276(08)60188-4>
38. Kutzelnigg W.: Theor. Chim. Acta 1985, 68, 445. <https://doi.org/10.1007/BF00527669>
39. Klopper W., Kutzelnigg W.: Chem. Phys. Lett. 1986 134, 17. <https://doi.org/10.1016/0009-2614(87)80005-2>
40. Klopper W.: Chem. Phys. Lett. 1991 186, 583. <https://doi.org/10.1016/0009-2614(91)90471-K>
41. Noga J., Kutzelnigg W., Klopper W.: Chem. Phys. Lett. 1992, 199, 497. <https://doi.org/10.1016/0009-2614(92)87034-M>
42. Noga J., Kutzelnigg W.: J. Chem. Phys. 1994, 101, 7738. <https://doi.org/10.1063/1.468266>
43. Noga J., Klopper W., Kutzelnigg W. in: Recent Advances in Coupled-Cluster Methods, Recent Advances in Computational Chemistry (R. J. Bartlett, Ed.), Vol. 3, p. 1. World Scientific, Singapore 1997.
44. Noga J., Valiron P. in: Computational Chemistry: Reviews of Current Trends (J. Leszczynski, Ed.), Vol. 7, p. 131. World Scientific, Singapore 2002.
45. Kutzelnigg W., Klopper W.: J. Chem. Phys. 1991, 94, 1985. <https://doi.org/10.1063/1.459921>
46. Taylor P. R., Persson B. J.: J. Chem. Phys. 1996, 96, 5915.
47. Ten-no S.: Chem. Phys. Lett. 2000, 330, 169. <https://doi.org/10.1016/S0009-2614(00)01066-6>
48. Klopper W. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III and P. R. Schreiner, Eds), Vol. 4, p. 2351. Wiley, Chichester 1998.
49. Klopper W., Samson C. C. M.: J. Chem. Phys. 2002, 116, 6397. <https://doi.org/10.1063/1.1461814>
50. Noga J., Valiron P., Kedžuch S.: J. Chem. Phys., to be submitted.
51. Partridge H.: J. Chem. Phys. 1989, 90, 1043. <https://doi.org/10.1063/1.456157>
52. Müller H., Kutzelnigg W., Noga J.: Mol. Phys. 1997, 92, 535. <https://doi.org/10.1080/002689797170284>
53. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
54. Wilson A. K., van Mourik T., Dunning T. H.: J. Mol. Struct. (THEOCHEM) 1996, 388, 339. <https://doi.org/10.1016/S0166-1280(96)80048-0>
55. Gdanitz R.: J. Chem. Phys. 1998, 109, 9795. <https://doi.org/10.1063/1.477649>
56. Gdanitz R.: J. Chem. Phys. 1999, 110, 706. <https://doi.org/10.1063/1.478178>
57. Franke R., Müller H., Noga J.: J. Chem. Phys. 2001, 114, 7746. <https://doi.org/10.1063/1.1361249>
58. Klopper W.: Mol. Phys. 2001, 99, 481. <https://doi.org/10.1080/00268970010017315>
59. Noga J., Valiron P., Klopper W.: J. Chem. Phys. 2001, 115, 2022. <https://doi.org/10.1063/1.1384011>
60. Raffenetti R. C.: J. Chem. Phys. 1973, 59, 5936. <https://doi.org/10.1063/1.1679962>
61. Schmidt M. V., Ruedenberg K.: J. Chem. Phys. 1979, 71, 3951. <https://doi.org/10.1063/1.438165>
62. Widmark P.-O., Persson B. J., Roos B.: Theor. Chim. Acta 1991, 79, 419. <https://doi.org/10.1007/BF01112569>
63. Kedžuch S., Noga J., Valiron P.: J. Comput. Chem., to be submitted.
64. Bak K. L., Jørgensen P., Olsen J., Klopper W.: J. Chem. Phys. 2000, 112, 9229. <https://doi.org/10.1063/1.481544>
65. Valiron P., Kedžuch S., Noga J.: Chem. Phys. Lett. 2003, 367, 723. <https://doi.org/10.1016/S0009-2614(02)01788-8>