Collect. Czech. Chem. Commun.
2003, 68, 2355-2376
https://doi.org/10.1135/cccc20032355
Theoretical Study of Solvent Effect on π-EDA Complexation I. SCF and DFT Calculations Within Polarized Continuum Model on TCNE-Benzene Complex
Ondrej Kyseľa,*, György Juhásza and Pavel Machb
a Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, A. Hlinku Av. 1, 949 74 Nitra, Slovakia
b Department of Biophysics and Chemical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, F1, 842 48 Bratislava, Slovakia
References
1. Hobza P., Zahradník R.: Intermolecular Complexes, p. 22. Academia, Prague 1988.
2. Pure Appl. Chem. 2000, 72, 179.
< A., Rogach A. L.: https://doi.org/10.1351/pac200072010179>
3. Photochem. Photobiol. A 1998, 117, 223.
< R., Reszka K. J., Sigman M. E. J.: https://doi.org/10.1016/S1010-6030(98)00327-X>
4. Collect. Czech. Chem. Commun. 1998, 63, 1223.
< C., Mehlhorn A., Fabian J.: https://doi.org/10.1135/cccc19981223>
5. J. Pharm. Biomed. Anal. 2002, 27, 133.
< S., El-Sadek M., Alla E. A.: https://doi.org/10.1016/S0731-7085(01)00524-6>
6. Microchim. Acta 2001, 137, 35.
< A. S., Ahmed I. S.: https://doi.org/10.1007/s006040170025>
7. Tetrahedron 2000, 56, 6957.
< S.: https://doi.org/10.1016/S0040-4020(00)00516-0>
8. Mulliken R. S., Person W. B.: Molecular Complexes. Wiley, New York 1969.
9a. Theor. Chim. Acta 1971, 20, 250.
< D. B., Wormer P. E. S.: https://doi.org/10.1007/BF00528551>
9b. J. Phys. Chem. 1975, 79, 137.
< O., Yanez M., Fernandez-Alonso J. I.: https://doi.org/10.1021/j100569a009>
10. J. Am. Chem. Soc. 1991, 113, 1083.
< J., Mixon S. T., Edwards W. D.: https://doi.org/10.1021/ja00004a004>
11. J. Phys. Chem. A 1997, 101, 4156.
< M., Yang T.-S., Yu J., Mebel A., Lin S. H.: https://doi.org/10.1021/jp961973h>
12. Bull. Chem. Soc. Jpn. 2000, 73, 2221.
O., Sho T., Shinji T.:
13a. J. Chem. Phys. 1990, 93, 5893.
< P., Selze H. L., Schlag E. W.: https://doi.org/10.1063/1.459587>
13b. J. Phys. Chem. 1993, 97, 3937.
< P., Selze H. L., Schlag E. W.: https://doi.org/10.1021/j100118a002>
13c. J. Am. Chem. Soc. 1994, 116, 3500.
< P., Selze H. L., Schlag E. W.: https://doi.org/10.1021/ja00087a041>
13d. J. Comput. Chem. 1995, 11, 1315.
< P., Šponer J., Reschel T.: https://doi.org/10.1002/jcc.540161102>
13e. J. Phys. Chem. 1996, 100, 18790.
< P., Selze H. L., Schlag E. W.: https://doi.org/10.1021/jp961239y>
13f. J. Phys. Chem. 1998, 102, 2501.
< P., Špirko V., Selze H. L., Schlag E. W.: https://doi.org/10.1021/jp973374w>
14. J. Mol. Struct. (THEOCHEM) 1994, 307, 107.
< S., Uchimaru T., Tanabe K.: https://doi.org/10.1016/0166-1280(94)80122-3>
14b. J. Chem. Phys. Lett. 1996, 252, 206.
< S., Uchimaru T., Mikami M., Tanabe K.: https://doi.org/10.1016/0009-2614(96)00173-X>
14c. J. Chem. Phys. Lett. 2000, 319, 547.
< S., Uchimaru T., Matsumura K., Mikami M., Tanabe K.: https://doi.org/10.1016/S0009-2614(00)00170-6>
15. J. Am. Chem. Soc. 2002, 124, 104.
< S., Honda K., Tadafumi U., Masuhiro M., Kazutoshi T.: https://doi.org/10.1021/ja0105212>
16. Theor. Chim. Acta 2002, 107, 154.
X. Y., Yi H. B., Li Z. R., He F. Ch.:
17. Chem. Phys. 1981, 55, 117.
< S., Scrocco E., Tomasi J.: https://doi.org/10.1016/0301-0104(81)85090-2>
18. J. Am. Chem. Soc. 1936, 58, 1486.
< L.: https://doi.org/10.1021/ja01299a050>
19. Lect. Notes Chem. 1980, 16, 142.
P., Urban M.:
20. Mol. Phys. 1970, 19, 553.
< S. F, Bernardi F.: https://doi.org/10.1080/00268977000101561>
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.6. Gaussian Inc., Pittsburgh (PA) 1998.
22. Phys. Rev. B 1964, 136, 864.
< P., Kohn W.: https://doi.org/10.1103/PhysRev.136.B864>
23. Phys. Rev. A 1965, 140,1133.
< W., Sham L. J.: https://doi.org/10.1103/PhysRev.140.A1133>
24. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
25. J. Mol. Struct. 1985, 121, 185.
< L. M. J., van Duijneveldt F. B.: https://doi.org/10.1016/0166-1280(85)80058-0>
26. Šponer J., Hobza P., Leszczynski J. in: Computational Chemistry Reviews of Current Trends, Vol. 5, p. 175. World Scientific, Singapore 2000.
27. J. Org. Chem. 1990, 55, 606.
< E. J., Andrews A. M., Ankoviac D. G., Beaman D. N., Du Pont L. E., Elsner T. E., Lang S. R., Oosterbaan Zwart M. A., Seagle R. E., Torreano L. A.: https://doi.org/10.1021/jo00289a041>
28. Kyseľ O., Zsittnyan A., Juhász J.: Proc. 51st Congress of Czech and Slovak Chemical Societes Nitra, September 6–9, 1999, p. C-PO13. STU, Bratislava 1999.
29. J. Phys. Chem. 1995, 99, 9017.
< K., Gould I. R., Myers A. B.: https://doi.org/10.1021/j100022a012>
30. Chem. Rev. 1976, 76, 717.
< R. A.: https://doi.org/10.1021/cr60304a002>
31a. J. Comput. Chem. 1989, 10, 616.
< F., Tomasi J.: https://doi.org/10.1002/jcc.540100504>
31b. J. Phys. Chem. B 1997, 101, 1051.
< C., Menucci B.: https://doi.org/10.1021/jp9621991>