Collect. Czech. Chem. Commun. 2002, 67, 1262-1266
https://doi.org/10.1135/cccc20021262

A Mild and Practical Preparation of Trifluoromethaneselenenyl Chloride

Emmanuel Magnier and Claude Wakselman*

Laboratoire SIRCOB, ESA CNRS 8086, Equipe Fluor, Université de Versailles-Saint-Quentin en Yvelines, 45, avenue des Etats-Unis, 78035 Versailles cedex, France

References

1. Bayreuther H., Haas A.: Chem. Ber. 1973, 106, 1418. <https://doi.org/10.1002/cber.19731060507>
2. Haas A., Praas H.-W.: Chem. Ber. 1992, 125, 571. <https://doi.org/10.1002/cber.19921250308>
3. Dale J. W., Emeleus H. J., Haszeldine R. N.: J. Chem. Soc. 1958, 2939. <https://doi.org/10.1039/jr9580002939>
4. Yarovenko N. N., Shemanina V. N., Gazieva G. B.: J. Gen. Chem. U.S.S.R. 1959, 29, 924; Zh. Obshch. Khim. 1959, 29, 942; Chem. Abstr. 1960, 54, 2158.
5. Magnier E., Vit E., Wakselman C.: Synlett 2001, 1260. <https://doi.org/10.1055/s-2001-16050>
6. We assume that the 10% “missing” selenide derivatives are present in the aqueous phase as reduced forms.
7. Billard T., Large S., Langlois B. R.: Tetrahedron Lett. 1997, 38, 65. <https://doi.org/10.1016/S0040-4039(96)02216-2>
8. Umemoto T.: Chem Rev. (Washington, D. C.) 1996, 96, 1770.
9. Gombler W.: Z. Naturforsch., B: Chem. Sci. 1981, 36, 535. <https://doi.org/10.1515/znb-1981-0503>
10. Rinker R. G., Gordon T. P., Corcoran W. H.: Inorg. Chem. 1964, 3, 1467. <https://doi.org/10.1021/ic50020a029>
11. Tordeux M., Langlois B., Wakselman C.: J. Org. Chem. 1989, 54, 2452. <https://doi.org/10.1021/jo00271a041>
12. Wakselman C.: J. Fluorine Chem. 1992, 59, 367. <https://doi.org/10.1016/S0022-1139(00)80331-0>
13. Bieber L. W., de Sa A. C. P. F., Menezes P. H., Gonçalves S. M. C.: Tetrahedron Lett. 2001, 42, 4597. <https://doi.org/10.1016/S0040-4039(01)00820-6>
14. Wakselman C., Tordeux M., Clavel J. L., Langlois B.: J. Chem. Soc., Chem. Commun. 1991, 993. <https://doi.org/10.1039/c39910000993>
15. Clavel J. L., Langlois B., Nantermet R., Tordeux M., Wakselman C.: J. Chem. Soc., Perkin Trans. 1 1992, 3371. <https://doi.org/10.1039/p19920003371>
16. Reich H. J., Chow F., Shah S. K.: J. Am. Chem. Soc. 1979, 101, 6638. <https://doi.org/10.1021/ja00516a025>
17. The reaction between dibenzyl diselenide and Rongalite was followed by NMR in a deuterated DMF/heavy water mixture. Formation of the selenide anion was not observed. Nevertheless, this experiment cannot totally exclude the formation of this anion because of the low accuracy of the technique.
18. Wakselman C., Kaziz C.: J. Fluorine Chem. 1986, 33, 347. <https://doi.org/10.1016/S0022-1139(00)85280-X>
19. Owing to the high nucleophilicity of selenide ions, formation of diselenides is more likely than attack of the selenyl iodide by the poorly stable trifluoromethyl carbanion (Scheme 5).
20. Wiberg K. B., Sklenak S.: J. Org. Chem. 2000, 65, 2014. <https://doi.org/10.1021/jo991511a>
21. We thank the editor, J. Kvíčala for this suggestion and the reference 20 concerning the existence of such ate-complexes.
22. Uneyama K., Kitagawa K.: Tetrahedron Lett. 1991, 32, 375. <https://doi.org/10.1016/S0040-4039(00)92632-7>
23. Anselmi A., Blazejewski J.-C., Tordeux M., Wakselman C.: J. Fluorine Chem. 2000, 105, 41. <https://doi.org/10.1016/S0022-1139(00)00286-4>
24. Munavalli S., Rohrbaugh D. K., Rossman D. I., Berg F. J., Wagner G. W., Durst H. D.: Synth. Commun. 2000, 30, 2847. <https://doi.org/10.1080/00397910008087435>