Collect. Czech. Chem. Commun.
2002, 67, 1061-1083
https://doi.org/10.1135/cccc20021061
Investigations of Electronic Interactions Between closo-Boranes and Triple-Bonded Substituents
Piotr Kaszynskia,*, Serhii Pakhomova and Victor G. Young, Jr.b
a Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, U.S.A.
b X-Ray Crystallographic Laboratory, Department of Chemistry, University of Minnesota, Twin Cities, MN 55455, U.S.A.
References
1. Inorg. Chem. 1998, 37, 3454; and references therein.
< P. v. R., Najafian K.: https://doi.org/10.1021/ic980110v>
2a. Inorg. Chem. 1981, 20, 563.
< A. J.: https://doi.org/10.1021/ic50216a049>
2b. Inorg. Chem. 1982, 21, 2297.
< A. J., Alderton M. J.: https://doi.org/10.1021/ic00136a034>
3. Chem. Rev. (Washington, D. C.) 1992, 92, 209; and references therein.
< V. I.: https://doi.org/10.1021/cr00010a002>
4. Eur. J. Inorg. Chem. 1999, 1831; and references therein.
< W., Peters G.: https://doi.org/10.1002/(SICI)1099-0682(199911)1999:11<1831::AID-EJIC1831>3.0.CO;2-J>
5. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1974, 2543.
< L. I., Kalinin V. N., Rys E. G.: https://doi.org/10.1007/BF00922156>
6. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1972, 458.
< L. I., Kalinin V. N., Rys E. G., Kvasov B. A.: https://doi.org/10.1007/BF00863165>
7. J. Chem. Soc., Dalton Trans. 1998, 401.
< M. A., MacBride J. A. H., Peace R. J., Wade K.: https://doi.org/10.1039/a707154j>
8. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1970, 2437.
< L. A., Vinogradova L. E., Kalinin V. N., Zakharkin L. I.: https://doi.org/10.1007/BF00859092>
9. Inorg. Chem. 1974, 13, 862.
< K. M., Harmon A. B., Thompson B. C., Spix C. L., Coburn T. T., Ryan D. P., Susskind T. Y.: https://doi.org/10.1021/ic50134a022>
10. J. Am. Chem. Soc. 1999, 121, 3122.
< B., Janoušek Z., King B. T., Woodford J. N., Wang C. H., Všetečka V., Michl J.: https://doi.org/10.1021/ja982368q>
11a. J. Mater. Chem. 1993, 3, 67.
< D. M., Mingos D. M. P., Forward J. M.: https://doi.org/10.1039/jm9930300067>
11b. J. Mater. Chem. 1993, 3, 139.
< D. M., Mingos D. M. P., Haggitt J. L., Powell H. R., Westcott S. A., Marder T. B., Taylor N. J., Kanis D. R.: https://doi.org/10.1039/jm9930300139>
12. Inorg. Chem. 2001, 40, 3373.
< D. G., Spencer J. T.: https://doi.org/10.1021/ic0007761>
13. Inorg. Chem. 2001, 40, 5428.
< T. W., Wedge T. J., Hawthorne M. F., Zink J. I.: https://doi.org/10.1021/ic010516z>
14. J. Am. Chem. Soc. 1966, 88, 935.
< W. H.: https://doi.org/10.1021/ja00957a013>
15. J. Am. Chem. Soc. 1969, 91, 323.
< K. M., Harmon A. B., MacDonald A. A.: https://doi.org/10.1021/ja01030a020>
16. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1995, 260, 315.
< P., Huang J., Jenkins G. S., Bairamov K. A., Lipiak D.: https://doi.org/10.1080/10587259508038705>
17. J. Am. Chem. Soc. 1965, 87, 2366.
< M. F., Olsen F. P.: https://doi.org/10.1021/ja01089a012>
18. J. Gen. Chem. U.S.S.R. 1990, 60, 2453.
L. I., Pisareva I. V., Sulaimankulova D. D., Antonovich V. A.:
19. Inorg. Chem. 1965, 4, 288.
< W. R., Knoth W. H., Muetterties E. L.: https://doi.org/10.1021/ic50025a005>
20. J. Am. Chem. Soc. 1967, 89, 4842.
< W. H., Sauer J. C., Balthis J. H., Miller H. C., Muetterties E. L.: https://doi.org/10.1021/ja00995a004>
21. Z. Naturforsch., B: Chem. Sci. 1995, 50, 781.
< A., Preetz W.: https://doi.org/10.1515/znb-1995-0516>
22. Kaszynski P., Lipiak D. in: Materials for Optical Limiting (R. Crane, K. Lewis, E. V. Stryland and M. Khoshnevisan, Eds), Vol. 374, p. 341. MRS, Boston 1995.
23. J. Organomet. Chem. 1999, 581, 28.
< P., Douglass A. G.: https://doi.org/10.1016/S0022-328X(99)00088-1>
24. Inorg. Chem. 2000, 39, 2243.
< S., Kaszynski P., Young V. G., Jr.: https://doi.org/10.1021/ic991350t>
25. Kaszynski P. in: Anisotropic Organic Materials. Approaches to Polar Order (R. Glaser and P. Kaszynski, Eds), Vol. 798, p. 68. ACS, Washington, D. C. 2001.
26. Inorg. Chem. 2001, 40, 6622.
< P., Pakhomov S., Tesh K. F., Young V. G., Jr.: https://doi.org/10.1021/ic010663x>
27. Inorg. Chem. 1990, 29, 47.
< P., Sangchakr B., McGrath M., Spalding T. R., Suffolk R. J.: https://doi.org/10.1021/ic00326a011>
28. Chem. Commun. 1998, 2487.
< M. A., Howard J. A. K., Moloney J. M., Wade K.: https://doi.org/10.1039/a806898d>
29. J. Chem. Soc., Dalton Trans. 1982, 2469.
< T., Brint P., Spalding T. R., McDonald W. S., Lloyd D. R.: https://doi.org/10.1039/dt9820002469>
30. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1986, 1260.
< L. I., Kovderov A. I., Olshevskaya V. A.: https://doi.org/10.1007/BF00956611>
31. J. Organomet. Chem. 2000, 610, 20.
< A. S., Fox M. A., Howard J. A. K., MacBride J. A. H., Wade K.: https://doi.org/10.1016/S0022-328X(00)00351-X>
32. Russ. Chem. Bull. 1998, 47, 1778.
< A. A., Inyushin S. G., Artemov V. A., Petrovskii P. V., Bregadze V. I.: https://doi.org/10.1007/BF02495704>
33. Chem. Commun. 1996, 2285.
< M. G., Hibbert T. G., Howard J. A. K., Mackinnon A., Wade K.: https://doi.org/10.1039/cc9960002285>
34. Inorg. Chem. 1971, 10, 350.
< R. K., Bohn M. D.: https://doi.org/10.1021/ic50096a026>
35. J. Chem. Soc., Dalton Trans. 2000, 4617.
< D., Holub J., Hofmann M., Schleyer P. v. R., Robertson H. E., Rankin D. W. H.: https://doi.org/10.1039/b005827k>
36. Angew. Chem., Int. Ed. Engl. 1993, 32, 1643.
< F., Frank M., Nieger M., Belser P., Zelewsky A. V., Balzani V., Barigelletti F., De Cola L., Flamigni L.: https://doi.org/10.1002/anie.199316431>
37. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 1312.
< R., Fernández-Suárez M., Muñoz L., Giguera R., Maichle-Mössmer C.: https://doi.org/10.1107/S0108270197005957>
38. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, 51, 1020.
< G., Punte G., Rivero B. E., Barón M.: https://doi.org/10.1107/S0108270194010991>
39. Proc. R. Soc. London 1952, 213, 86.
< G. A., Rollett J. S.: https://doi.org/10.1098/rspa.1952.0112>
40. Acta Crystallogr. 1953, 6, 350.
< R. B., Collin R. L.: https://doi.org/10.1107/S0365110X53000922>
41. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, 28, 2875.
< N. A., Kitaigorodsky A. I., Sirota M. I.: https://doi.org/10.1107/S0567740872007071>
42. Acta Chem. Scand. 1996, 50, 1164.
< R., Janczak J.: https://doi.org/10.3891/acta.chem.scand.50-1164>
43. J. Org. Chem. U.S.S.R. 1985, 21, 1859.
O. E., Antipin M. Yu., Struchkov Yu. T., Mikhailov I. E., Dushenko G. A., Olekhnovich L. P., Minkin V. I.:
44. J. Am. Chem. Soc. 1994, 116, 7588.
< P. E., Galoppini E., Gilardi R.: https://doi.org/10.1021/ja00096a016>
45. Such a bond order matrix is conveniently obtained from Mulliken population analysis in the output of MOPAC calculations. Although absolute values for the π bond order estimate may not be reliable in semiempirical methods, we assume that the observed trends in series of compounds are valid.
46. J. Am. Chem. Soc. 1970, 92, 4796.
< W. J., Ditchfield R., Radom L., Pople J. A.: https://doi.org/10.1021/ja00719a006>
47. Acta Chem. Scand. 1990, 44, 394.
< T.: https://doi.org/10.3891/acta.chem.scand.44-0394>
48. Inorg. Chem. 2000, 39, 3582.
< C.-W., Yang Q., Sze E. T.-P., Mak T. C. W., Chan D. T. W., Xie Z.: https://doi.org/10.1021/ic000137q>
49. Pakhomov S., Douglass A. G., Kaszynski P., Young V. G., Jr.: Presented at Boron U.S.A. VII, Pittsburgh (PA), June 2000.
50. Nunley R., Kaszynski P.: Unpublished results.
51. Inorg. Chem. 1964, 3, 444.
< E. L., Balthis J. H., Chia Y. T., Knoth W. H., Miller H. C.: https://doi.org/10.1021/ic50013a030>
52. J. Phys. Chem. 1974, 78, 788.
< R. M., Hepburn D. R., Jr., Klingen T. J.: https://doi.org/10.1021/j100601a006>
53. J. Inorg. Nucl. Chem. 1970, 32, 2853.
< J. R., Klingen T. J.: https://doi.org/10.1016/0022-1902(70)80347-5>
54. J. Am. Chem. Soc. 1964, 86, 5434.
< W. R., Knoth W. H., Muetterties E. L.: https://doi.org/10.1021/ja01078a015>
55. Spectrochim. Acta, Part A 1997, 53, 707.
< M., Paillous P., Bruston P., Guillemin J. C., Bénilan Y., Daoudi A., Raulin F.: https://doi.org/10.1016/S1386-1425(96)01827-6>
56. J. Org. Chem. 1985, 50, 2551.
< W., Butt G., Kok G. B., Marriott S., Topsom R. D.: https://doi.org/10.1021/jo00214a028>
57. J. Org. Chem. 1992, 57, 4277.
< P. E., Xiong Y., Zhou J. P.: https://doi.org/10.1021/jo00041a038>
58. Naturforsch., B: Chem. Sci. 1993, 48, 598.
< W., Franken A., Rath M. Z.: https://doi.org/10.1515/znb-1993-0509>
59. Magn. Reson. Chem. 1995, 33, 917.
< H., Heydenreich M.: https://doi.org/10.1002/mrc.1260331115>
60. J. Organomet. Chem. 1998, 570, 219.
< G. T., Turner P. D., Stephens K. A.: https://doi.org/10.1016/S0022-328X(98)00765-7>
61. J. Org. Chem. U.S.S.R. 1977, 13, 449.
G. A., Proidakov A. G., Gavrilov L. D., Vereshchagin L. I.:
62. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1968, 2532.
< L. I., Kalinin V. N., Podvisotskaya L. S.: https://doi.org/10.1007/BF00903428>
63. 1-Bromo-2-(trimethylsilyl)acetylene (b.p. 50 °C/1.5 torr, 66% yield) was prepared from (trimethylsilyl)acetylene according to Synthesis 1983, 128, in the absence of pyridine.
< J. A., Zweifel G.: https://doi.org/10.1055/s-1983-30250>
64. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian98, Revision A.7. Gaussian, Inc., Pittsburgh (PA) 1998.
65. J. Phys. Chem. 1996, 100, 16502.
< A. P., Radom L.: https://doi.org/10.1021/jp960976r>
66. Inorg. Chem. 1978, 17, 1569.
< M. J. S., McKee M. L.: https://doi.org/10.1021/ic50184a036>