Collect. Czech. Chem. Commun.
2002, 67, 813-821
https://doi.org/10.1135/cccc20020813
Two Forgotten Ten-Vertex arachno Triheteroboranes: arachno-5,6,9-C2SB7H11 and arachno-5,6,9-C3B7H13, Their Molecular Structure Determination by ab initio/NMR Approach and Synthesis of the Thiacarbaborane
Drahomír Hnyk* and Josef Holub
Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic
References
1a. Štíbr B., Plešek J., Heřmánek S. in: Advances in Boron and the Boranes (J. F. Liebman and R. E. Williams, Eds), Chap. 3, p. 35. VCH Publishers, New York 1988.
1b. Štíbr B., Plešek J., Jelínek T., Baše K., Janoušek Z., Heřmánek S. in: Boron Chemistry (S. Heřmánek, Ed.), p. 175. World Scientific, Singapore 1988.
2. Inorg. Chem. 1973, 12, 546.
< D. S., Lipscomb W. N.: https://doi.org/10.1021/ic50121a010>
3. For definition of “isoelectrolobal”, see, e.g. J. Chem. Soc., Dalton Trans. 1986, 1879.
< M. A., Crook J. E., Greenwood N. N., Kennedy J. D.: https://doi.org/10.1039/dt9860001879>
4. A {6-SiB9} arrangement was also noted in the form of arachno-CH3SiB9H12(NH(CH3)2): Organometallics 1996, 15, 2569.
< L., Ganter B.: https://doi.org/10.1021/om960043h>
5. J. Am. Chem. Soc. 1986, 108, 4303.
< J. J., Gimarc B. M.: https://doi.org/10.1021/ja00275a011>
6. The known drawbacks of the Mulliken approach (see, e.g., J. Chem. Phys. 1985, 83, 735) resulted in a different charge distribution within 1 as compared with the NPA scheme, B(6,9) being the most negative (–0.309) according to the latter approach. The other vertices are almost uniformly and much less negatively charged and the topological charge stabilization rule of Gimarc cannot be unambiguously applied to the preferences of further vertex substitution. However, on the basis of chemical experience (e.g. position of the hydrogen bridge), symmetry considerations (e.g. the third heteroatom cannot occupy the positions 1 and 3 in 2 and with respect to the correlation between the corresponding 11B NMR spectra also in 3), and connectivity rules according to ref.28, the position 5 remains as the only alternative for accommodating the third heteroatom.
< A. E., Weinstock R. B., Weinhold F.: https://doi.org/10.1063/1.449486>
7. J. Chem. Soc., Dalton Trans. 1990, 2887.
< X. L. R., Kennedy J. D., Thornton-Pett M., Nestor K., Štíbr B., Jelínek T., Baše K.: https://doi.org/10.1039/dt9900002887>
8a. Inorg. Chem. 1967, 6, 1696.
< W. R., Klanberg F., Muetterties E. L.: https://doi.org/10.1021/ic50055a019>
8b. J. Chem. Soc., Chem. Commun. 1981, 1163.
K., Hanousek F., Štíbr B., Plešek J., Lyčka J.:
8c. Collect. Czech. Chem. Commun. 1983, 48, 2593.
< K.: https://doi.org/10.1135/cccc19832593>
9a. Inorg. Synth. 1983, 22, 226.
< R. W., Pretzer R. W.: https://doi.org/10.1002/9780470132531.ch52>
9b. Inorg. Chem. 1977, 13, 1756.
< A. R., Bodner G. M., Garber A. R., McDowell D., Todd L. J.: https://doi.org/10.1021/ic50137a045>
9c. J. Chem. Soc., Dalton Trans. 1988, 1467.
< M., Fontaine X. L. R., Kennedy J. D.: https://doi.org/10.1039/dt9880001467>
10. Collect. Czech. Chem. Commun. 1974, 39, 1805.
< B., Plešek J., Heřmánek S.: https://doi.org/10.1135/cccc19741805>
11. J. Chem. Soc., Chem. Commun. 1990, 1309.
< B., Kennedy J. D., Jelínek T.: https://doi.org/10.1039/c39900001309>
12. J. Chem. Soc., Chem. Commun. 1991, 1389.
< J., Jelínek T., Plešek J., Štíbr B., Heřmánek S., Kennedy J. D.: https://doi.org/10.1039/c39910001389>
13. Inorg. Chim. Acta 1996, 245, 129.
< B., Holub J., Císařová I., Teixidor F., Viñas C.: https://doi.org/10.1016/0020-1693(96)05082-7>
14. Holub J., Jelínek T., Štíbr B., Kennedy J. D., Thornton-Pett M.: VIIIth International Meeting on Boron Chemistry, The University of Tennessee, Knoxville (U.S.A.), July 11–15, 1993, CA-14, p. 47.
15. J. Am. Chem. Soc. 1992, 114, 477; and references therein.
< M., Schleyer P. v. R.: https://doi.org/10.1021/ja00028a013>
16a. A C1 form of B5H11 is favored over the Cs structure: Inorg. Chem. 1990, 29, 153.
< P. v. R., Bühl M., Fleischer U., Koch W.: https://doi.org/10.1021/ic00327a001>
16b. The structure of nido-C2B6H10: Inorg. Chem. 1992, 31, 3060.
< J. W., Prakash G. K. S., Bühl M., Schleyer P. v. R., Williams R. E.: https://doi.org/10.1021/ic00040a014>
16c. A theoretical and experimental refinement of closo-1-NB11H12: Inorg. Chem. 1993, 32, 2442.
< D., Bühl M., Schleyer P. v. R., Volden H. V., Gundersen S., Müller J., Paetzold P.: https://doi.org/10.1021/ic00063a040>
16d. For further references, see: Bühl M., Schleyer P. v. R. in: Electron Deficient Boron and Carbon Clusters (G. A. Olah, K. Wade and R. E. Williams, Eds), Chap. 4, p. 113. Wiley, New York 1991.
16e. J. Am. Chem. Soc. 1996, 118, 4405.
< M., Jaballas T., Arias J., Lee H., Onak T.: https://doi.org/10.1021/ja954089y>
16f. Bühl M. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer and P. R. Schreiner, Eds), Vol. 3, p. 1835. Wiley, Chichester (U.K.) 1998.
17a. Chem. Eur. J. 2001, 7, 1546.
< J., Jelínek T., Hnyk D., Plzák Z., Císařová I., Bakardjiev M., Štíbr B.: https://doi.org/10.1002/1521-3765(20010401)7:7<1546::AID-CHEM1546>3.0.CO;2-K>
17b. Štíbr B., Tok O. L., Milius W., Bakardjiev M., Holub J., Hnyk D., Wrackmeyer B.: Angew. Chem., Int. Ed. 2002, in press.
18. Inorg. Chem. 1993, 32, 487.
< T., Tseng J., Diaz M., Tran D., Arias J., Herrera S., Brown D.: https://doi.org/10.1021/ic00056a024>
19. Chem. Rev. (Washington, D. C.) 1992, 92, 325.
< S.: https://doi.org/10.1021/cr00010a007>
20. J. Chem. Soc., Dalton Trans. 1987, 1573.
< X. L. R., Kennedy J. D.: https://doi.org/10.1039/dt9870001573>
21. See, for example: Collect. Czech. Chem. Commun. 1991, 56, 1618.
< J., Štíbr B., Fontaine X. L. R., Kennedy J. D., Heřmánek S., Jelínek T.: https://doi.org/10.1135/cccc19911618>
22. Hehre W., Radom L., Schleyer P. v. R., Pople J. A.: Ab initio Molecular Orbital Theory. Wiley, New York 1986.
23. Frisch M. J., Trucks G. W., Schlegel H. B., Gill P. M. W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T., Petterson G. A., Montgomery J. A., Raghavachari K., Al-Laham M. A., Zahrzewski V. G., Ortiz J. V., Foresman J. B., Cioslowski J., Stefanov B. B., Nanayakkra A., Challacombe M., Peng C. Y., Ayala P. Y., Chen Y., Wong M. W., Andres J. L., Replogle E. S., Gomprets R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker L., Stewart J. P., Head-Gordon M., Gonzales C., Pople J. A.: Gaussian94, Revision B.2. Gaussian Inc., Pittsburg (PA) 1995.
24a. Isr. J. Chem. 1980, 19, 193.
< W.: https://doi.org/10.1002/ijch.198000020>
24b. J. Chem. Phys. 1982, 76, 1919.
< M., Kutzelnigg W.: https://doi.org/10.1063/1.443165>
24c. Kutzelnigg W., Schindler M., Fleischer U.: NMR, Basic Principles and Progress, p. 165. Springer Verlag, Berlin, Heidelberg 1990.
25. Huzinaga S.: Approximate Atomic Wave Functions. University of Alberta, Edmonton 1971.
26. J. Phys. Chem. 1959, 21, 51.
T. P., Landesman H. L., Williams R. E., Shapiro I.:
27a. Chem. Rev. (Washington, D. C.) 1988, 88, 899.
< A. E., Weinhold F.: https://doi.org/10.1021/cr00088a005>
27b. J. Am. Chem. Soc. 1990, 112, 1434.
< A. E., Schleyer P. v. R.: https://doi.org/10.1021/ja00160a022>
28. Adv. Inorg. Chem. Radiochem. 1976, 18, 95.
R. E.:
29. Inorg. Chem. 2002, 41, 2817.
< J., Bakardjiev M., Štíbr B., Hnyk D., Tok O. L., Wrackmeyer B.: https://doi.org/10.1021/ic020047g>
30. In 1, the B(8)–B(9) bond length and the B(8)–B(9)–B(10) bond angle were computed to be 1.894 Å and 101.5°, respectively. The B(5)–B(10) and B(4)–B(9) separations converged to 1.867 and 1.749 Å (MP2/6-31G*).
31. Collect. Czech. Chem. Commun. 1999, 64, 993.
< D., Hofmann M., Schleyer P. v. R.: https://doi.org/10.1135/cccc19990993>