Collect. Czech. Chem. Commun.
2001, 66, 912-922
https://doi.org/10.1135/cccc20010912
P-Chiral Oligonucleotides. Effect of Configuration at Phosphorus on Transport of Tetra(thymidine Methylphosphonate)s Across Organic Liquid Membrane
Zbigniew J. Lesnikowskia,*, Marzena Przepiórkiewicza, Yutaka Tamurab, Hideko Kajib and Eric Wickstromc
a Center of Microbiology and Virology, Polish Academy of Sciences, Lodz 93-232, Poland
b Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, U.S.A.
c Department of Microbiology and Immunology, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, U.S.A.
References
1. Wickstrom E. (Ed.): Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS. Wiley–Liss, New York 1991.
2. Agrawal S. (Ed.): Antisense Therapeutics. Humana Press, Totowa (NJ) 1996.
3. Trends Biotechnol. 1996, 14, 376.
< S.: https://doi.org/10.1016/0167-7799(96)10053-6>
4. Akhtar S. (Ed.): Delivery Strategies for Antisense Oligonucleotide Therapeutics. CRC Press, Boca Raton (FL) 1995.
5. Crooke S. T.: Therapeutic Applications of Oligonucleotides. Springer-Verlag, New York 1995.
6. Antiviral Res. 2000, 46, A47.
< J.-L., Bologna J. C., Bres J. C., Lioux T., Lefebvre I., Vasseur J. J., Vives E., Morvan F.: https://doi.org/10.1016/S0166-3542(00)90371-1>
7. Bio/Technology 1991, 9, 358.
< P. S.: https://doi.org/10.1038/nbt0491-358>
8. Trends Biotechnol. 1992, 10, 281.
< E.: https://doi.org/10.1016/0167-7799(92)90245-Q>
9. Methods Mol. Biol. (Totowa, N. J.) 1993, 20, 355.
E., Peyman A.:
10. Nucleic Acids Res. 1998, 26, 2069.
< G., Alvarez K., Dell′Aquila C., Morvan F., Vasseur J. J., Imbach J. L., Rayner B.: https://doi.org/10.1093/nar/26.9.2069>
11a. Other phosphonate oligonucleotide analogues include: phenylphosphonate (Nucleosides Nucleotides 1994, 13, 1039);
< S. A. N., Kumar A., Katti S. B.: https://doi.org/10.1080/15257779408011877>
11b. 4,4′-dimethoxy- trityl)phosphonate: J. Org. Chem. 1985, 50, 3908;
< W. J., Zon G., Egan W., Byrd R. A., Phillips L. R., Gallo K. A.: https://doi.org/10.1021/jo00220a044>
11c. (hydroxymethyl)phosphonate: Bioorg. Chem. 1994, 22, 128;
< Z. J.: https://doi.org/10.1006/bioo.1994.1011>
11d. hydroxymethyl)phosphonate: Tetrahedron Lett. 1995, 36, 8845;
< T., Sekine M.: https://doi.org/10.1016/0040-4039(95)01890-T>
11e. phosphonoacetate: Nucleosides Nucleotides 1996, 15, 1725;
< M. J., Reitman M. S., MacMillan E. W., Cook A. F.: https://doi.org/10.1080/07328319608002728>
11f. boranophosphonate: J. Am. Chem. Soc. 1990, 112, 9000;
< A., Ramsay Shaw B., Spielvogel B. F.: https://doi.org/10.1021/ja00180a066>
11g. carboranylmethyl)phosphonate: J. Org. Chem. 1993, 58, 6531.
< Z. J., Schinazi R. F.: https://doi.org/10.1021/jo00076a001>
12. Bioorg. Khim. 1998, 24, 201.
D. V., Lokhov S. G., Ivanova E. M., Zarytova V. F.:
13. Bioorg. Chem. 1993, 21, 127.
< Z. J.: https://doi.org/10.1006/bioo.1993.1014>
14. Nucleic Acids Res. 1990, 18, 2109.
< Z. J., Jaworska M., Stec W. J.: https://doi.org/10.1093/nar/18.8.2109>
15. J. Biol. Chem. 1980, 255, 9659.
P. S., Dreon N., Pulford S. M., McParland K. B.:
16. Nucleic Acids Res. 1994, 22, 2404.
< E. V., Savchenko E. V., Lokhov S. G., Engels J. W., Wickstrom E., Lebedev A. V.: https://doi.org/10.1093/nar/22.12.2404>
17. Bioorg. Chem. 1994, 22, 128.
< Z. J.: https://doi.org/10.1006/bioo.1994.1011>
18. Nucleic Acids Res. 1988, 16, 11675.
< Z. J., Jaworska M., Stec W. J.: https://doi.org/10.1093/nar/16.24.11675>
19. New J. Chem. 1994, 18, 1197.
Z. J., Zabawska D., Jaworska-Maslanka M. M., Schinazi R. F., Stec W. J.:
20. Applied Biosystems USER Bulletin, No. 43. Applied Biosystems, Foster City 1987.
21. Nucleic Acids Res. 1991, 19, 1805.
< J. M., Andracki M. E ., DeVine R. J., Walder J. A.: https://doi.org/10.1093/nar/19.8.1805>
22. Nucleic Acids Res. 1991, 19, 5551.
< S., Basu S., Wickstrom E., Juliano R. L.: https://doi.org/10.1093/nar/19.20.5551>
23. J. Am. Chem. Soc. 1994, 116, 5501.
< C., Galan A., Kobiro K., de Mendoza J., Park T. K., Rebek J., Jr., Salmeron A., Usman N.: https://doi.org/10.1021/ja00091a077>
24. Trends Cell Biol. 1992, 2, 139.
< S., Juliano R.: https://doi.org/10.1016/0962-8924(92)90100-2>
25. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6454.
< L. A., Deeva E. A., Zarytova V. F., Ivanova E. M., Ryte A. S., Yurchenko L. V., Vlassov V. V.: https://doi.org/10.1073/pnas.86.17.6454>
26. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 3474.
< S. L., Stein C. A., Zhang X. H., Mori K., Nakanishi M., Subasinghe C., Cohen J. S., Neckers L. M.: https://doi.org/10.1073/pnas.86.10.3474>
27. Nat. Med. 1997, 3, 414.
< L., Loike J. D., Khaled Z., Loike G., Solverstein S. C., Cao L., el Khoury J., Cai T. Q., Stein C. A.: https://doi.org/10.1038/nm0497-414>
28. Biochemistry 1986, 25, 6228.
C. H., Blake K. R., Miller P. S., Reddy M. P., Ts'o P. O. P.:
29. Nucleic Acids Res. 1991, 19, 5543.
< Y., Akhtar S., Periasamy A., Herman B., Juliano R.: https://doi.org/10.1093/nar/19.20.5543>
30. Stein W. D.: Transport and Diffusion Across Cell Membranes, p. 69. Academic Press, Orlando (FL) 1986.
31. Anti-Cancer Drug Des. 1993, 8, 65.
L., Zon G., Mizan S., Wilson W. D.:
32. J. Chromatogr. 1993, 648, 157.
< A., Tamura Y., Ide H., Makino K.: https://doi.org/10.1016/0021-9673(93)83297-6>
33. Anal Biochem. 1994, 223, 285.
< A., Tamura Y., Wada H., Makino K.: https://doi.org/10.1006/abio.1994.1586>
34. Nucleosides Nucleotides 1998, 17, 269.
< Y., Miyoshi M., Yokota T., Makino K., Murakami A.: https://doi.org/10.1080/07328319808005175>
35. Tetrahedron 1993, 49, 1043.
< A. V., Frauendorf A., Vyazovkina E. V., Engels J. W.: https://doi.org/10.1016/S0040-4020(01)86284-0>
36. Clementi E. in: Structure and Dynamics: Nucleic Acids and Proteins (E. Clementi and R. H. Sarma, Eds), p. 321. Adenine Press, New York 1983.
37. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 125.
< E.: https://doi.org/10.1146/annurev.bb.17.060188.001013>
38. Int. J. Biol. Macromol. 1987, 9, 186.
< E.: https://doi.org/10.1016/0141-8130(87)90051-1>
39. Nucleic Acids Res. 1989, 17, 389.
< R. J., Goodfellow J. M.: https://doi.org/10.1093/nar/17.1.389>
40. J. Am. Chem. Soc. 1992, 114, 3201.
< F. H., Rao B. G., Saxe J. D., Singh U. C.: https://doi.org/10.1021/ja00035a005>
41. J. Am. Chem. Soc. 1990, 112, 9468.
< F. H., Singh U. C., Palmer T. C., Saxe J. D.: https://doi.org/10.1021/ja00182a004>