Collect. Czech. Chem. Commun. 2001, 66, 676-684
https://doi.org/10.1135/cccc20010676

Effects of pH, Temperature and Various Anions on Thiourea Disappearance in Aqueous Media with Titanium Dioxide Under UV-Irradiation. Photomineralization Kinetics

Abdelghani Boussaouda,*, Gerard Ducb, Jean Pierre Meilleb and Michelle Petit-Ramelb

a Laboratoire de Chimie-Physique, Faculté des Sciences, Agadir, Morocco
b Laboratoire d'Instrumentation et de Chimie Analytique II, Université Claude Bernard, Lyon I, France

References

1. Matthews R. W.: J. Chem. Soc., Faraday Trans. 1 1984, 80, 457. <https://doi.org/10.1039/f19848000457>
2. Okamoto K., Yamamoto Y., Tanaka H., Itaya A.: Bull. Chem. Soc. Jpn. 1985, 58, 2023. <https://doi.org/10.1246/bcsj.58.2023>
3. Stafford U., Gray K. A., Kamat P. V.: J. Phys. Chem. 1994, 98, 6343. <https://doi.org/10.1021/j100076a019>
4. Fujihira M., Satoh Y., Osa T.: J. Electroanal. Chem. Interfacial Electrochem. 1981, 126, 277. <https://doi.org/10.1016/S0022-0728(81)80435-4>
5. Al-Ekabi H., Serpone N.: J. Phys. Chem. 1988, 92, 5726. <https://doi.org/10.1021/j100331a036>
6. Al-Ekabi H., Serpone N., Pelizzetti E., Minero C., Fox M. A., Draper R. B.: Langmuir 1989, 5, 250. <https://doi.org/10.1021/la00085a048>
7. Fox M. A., Dulay M. T.: Chem. Rev. 1993, 93, 341. <https://doi.org/10.1021/cr00017a016>
8. Esgueva E., Garcia J., Domenech X., Peral J.: Oxid. Commun. 1997, 20(4), 546.
9. Davis A. P., Huang C. P.: Wat. Res. 1991, 25(1), 1273. <https://doi.org/10.1016/0043-1354(91)90067-Z>
10. Bard A. J.: J. Phys. Chem. 1982, 86, 172. <https://doi.org/10.1021/j100391a008>
11. Davis A. P., Huang C. P.: Wat. Sci. Technol. 1989, 21, 455. <https://doi.org/10.2166/wst.1989.0248>
12. Schindler P. W., Stumm W. in: Aquatic Surface Chemistry: Chemical Processes at the Particle–Water Interface (W. Stumm, Ed.), p. 83. Wiley, New York 1987.
13. Cunningham J., Al-Sayyed G., Srijanarai S. in: Aquatic and Surface Photochemistry (G. R. Heltz, R. G. Zepp and D. G. Crosby, Eds), p. 317. Lewis Publishers, Boca Raton 1994.
14. Spikes J. D.: J. Photochem. Photobiol., A 1981, 34, 549. <https://doi.org/10.1111/j.1751-1097.1981.tb09402.x>
15. Terzian R., Serpone N.: J. Photochem. Photobiol. A 1995, 89, 163. <https://doi.org/10.1016/1010-6030(94)04020-3>
16. Ohtani B., Okugawa Y., Nishimoto S., Kagia T.: J. Phys. Chem. 1987, 91, 3550. <https://doi.org/10.1021/j100297a017>
17. Parks G. A.: Chem. Rev. 1965, 65, 177. <https://doi.org/10.1021/cr60234a002>
18. Matthews R. W.: Sol. Energy 1987, 38, 405. <https://doi.org/10.1016/0038-092X(87)90021-1>
19. Abdullah M., Low G. K.-C., Matthews R. W.: J. Phys. Chem. 1990, 94, 6820. <https://doi.org/10.1021/j100380a051>
20. Matthews R. W.: J. Catal. 1988, 111, 264. <https://doi.org/10.1016/0021-9517(88)90085-1>
21. Reber J. F., Meir K.: J. Phys. Chem. 1984, 88, 5903. <https://doi.org/10.1021/j150668a032>
22. Henglein A.: Radiat. Phys. Chem. 1980, 15, 151. <https://doi.org/10.1016/0146-5724(80)90125-9>
23. Low G. K.-C., McEvoy S. R., Matthews R. W.: Environ. Sci. Technol. 1991, 25, 460. <https://doi.org/10.1021/es00015a013>