Collect. Czech. Chem. Commun. 2001, 66, 1797-1808
https://doi.org/10.1135/cccc20011797

Stereochemistry of Cuprate-Mediated Conjugate Additions of a 17-Iodoandrost-16-ene to E- and Z-6-Methylhept-2-en-4-one

Denise L. Andersen and Thomas G. Back*

Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

References

1. For an overview, see: Dence J. B.: Steroids and Peptides, Chaps 1–3. Wiley, New York 1980.
2a. Redpath J., Zeelen F. J.: Chem. Soc. Rev. 1983, 12, 75. <https://doi.org/10.1039/cs9831200075>
2b. Piatak D. M., Wicha J.: Chem. Rev. (Washington, D. C.) 1978, 78, 199. <https://doi.org/10.1021/cr60313a002>
3a. Mori H., Tsuneda K.: Chem. Pharm. Bull. 1963, 11, 1413. <https://doi.org/10.1248/cpb.11.1413>
3b. Habermehl G., Haaf A.: Liebigs Ann. Chem. 1969, 723, 181. <https://doi.org/10.1002/jlac.19697230119>
3c. Cookson R. C., Coxon J. M.: J. Chem. Soc. C 1971, 1466. <https://doi.org/10.1039/j39710001466>
3d. Turner A. B., van Leersum P. T.: Tetrahedron Lett. 1983, 24, 4589. <https://doi.org/10.1016/S0040-4039(00)85963-8>
3e. Cox P. J., Turner A. B.: Tetrahedron 1984, 40, 3153. <https://doi.org/10.1016/S0040-4020(01)82442-X>
3f. Jiang B., Xu Y.: Tetrahedron Lett. 1992, 33, 511.
3g. Skoda-Földes R., Székvölgyi Z., Kollár L., Berente Z., Horváth J., Tuba Z.: Tetrahedron 2000, 56, 3415. <https://doi.org/10.1016/S0040-4020(00)00241-6>
3h. Szarka Z., Skoda-Földes R., Kollár L., Berente Z., Horváth J., Tuba Z.: Tetrahedron 2000, 56, 5253. <https://doi.org/10.1016/S0040-4020(00)00435-X>
3i. Petz A., Gálik G., Horváth J., Tuba Z., Berente Z., Pintér Z., Kollár L.: Synth. Commun. 2001, 31, 335. <https://doi.org/10.1081/SCC-100000521>
3j. Schweder B., Uhlig E., Doering M., Kosemund D.: J. Prakt. Chem./Chem.-Ztg. 1993, 335, 439. <https://doi.org/10.1002/prac.19933350508>
3k. Schweder B., Uhlig E., Kosemund D.: J. Prakt. Chem./Chem.-Ztg. 1993, 335, 201. <https://doi.org/10.1002/prac.19933350216>
4a. Arunachalam T., Longcope C., Caspi E.: J. Biol. Chem. 1979, 254, 5900.
4b. Cacchi S., Ciattini P. G., Morera E., Ortar G.: Tetrahedron Lett. 1987, 28, 3039. <https://doi.org/10.1016/S0040-4039(00)96279-8>
4c. Arcadi A., Attanasi O. A., De Crescentini L., Rossi E., Serra-Zanetti F.: Tetrahedron 1996, 52, 3997. <https://doi.org/10.1016/S0040-4020(96)00064-6>
5a. Barton D. H. R., O’Brien R. E., Sternhell S.: J. Chem. Soc. 1962, 470. <https://doi.org/10.1039/jr9620000470>
5b. Barton D. H. R., Bashiardes G., Fourrey J.-L.: Tetrahedron 1988, 44, 147. <https://doi.org/10.1016/S0040-4020(01)85102-4>
6. Back T. G., Hu N.-X.: Tetrahedron 1993, 49, 337. <https://doi.org/10.1016/S0040-4020(01)80303-3>
7. Chamberlin J. W., Chaney M. O., Chen S., Demarco P. V., Jones N. D., Occolowitz J. L.: J. Antibiot. 1974, 27, 992. <https://doi.org/10.7164/antibiotics.27.992>
8a. Jung M. E., Johnson T. W.: Tetrahedron 2001, 57, 1449. <https://doi.org/10.1016/S0040-4020(00)01086-3>
8b. Jung M. E., Johnson T. W.: Org. Lett. 1999, 1, 1671. <https://doi.org/10.1021/ol991057x>
8c. Jung M. E., Johnson T. W.: J. Am. Chem. Soc. 1997, 119, 12412. <https://doi.org/10.1021/ja9733189>
9. Krafft M. E., Dasse O. A., Fu Z.: J. Org. Chem. 1999, 64, 2475. <https://doi.org/10.1021/jo982319w>
10. Shoji N., Umeyama A., Shin K., Takeda K., Arihara S., Kobayashi J., Takei M.: J. Org. Chem. 1992, 57, 2996. <https://doi.org/10.1021/jo00037a009>
11. Oare D. A., Henderson M. A., Sanner M. A., Heathcock C. H.: J. Org. Chem. 1990, 55, 132. <https://doi.org/10.1021/jo00288a027>
12. Bienvenüe A.: J. Am. Chem. Soc. 1973, 95, 7345. <https://doi.org/10.1021/ja00803a023>
13. Sviridov A. F., Ermolenko M. S., Yashunsky D. V., Kochetkov N. K.: Tetrahedron Lett. 1983, 24, 4359. <https://doi.org/10.1016/S0040-4039(00)88341-0>
14. Takahashi T., Ootake A., Tsuji J., Tachibana K.: Tetrahedron 1985, 41, 5747. <https://doi.org/10.1016/S0040-4020(01)91412-7>
15. Miyashita M., Suzuki T., Hoshino M., Yoshikoshi A.: Tetrahedron 1997, 53, 12469. <https://doi.org/10.1016/S0040-4020(97)00781-3>
16. For some related iodocarbocation rearrangements, see: ref.5b and Jung M. E., Hatfield G. L.: Tetrahedron Lett. 1982, 23, 3991. <https://doi.org/10.1016/S0040-4039(00)88677-3>
17. Taylor R. J. K., Casy G. in: Organocopper Reagents – A Practical Approach (R. J. K. Taylor, Ed.), Chap. 2, p. 40–41. Oxford University Press, Oxford 1994.
18. Nakamura E. in: Organocopper Reagents – A Practical Approach (R. J. K. Taylor, Ed.), Chap. 6. Oxford University Press, Oxford 1994.
19. For an interesting example, where a reversal of stereochemistry was observed in the presence of chloro(trimethyl)silane, see: Corey E. J., Boaz N. W.: Tetrahedron Lett. 1985, 26, 6015. <https://doi.org/10.1016/S0040-4039(00)95113-X>
20a. Krauss S. R., Smith S. G.: J. Am. Chem. Soc. 1981, 103, 141. <https://doi.org/10.1021/ja00391a026>
20b. Hallnemo G., Olsson T., Ullenius C.: J. Organomet. Chem. 1985, 282, 133. <https://doi.org/10.1016/0022-328X(85)87150-3>
20c. Ullenius C., Christenson B.: Pure Appl. Chem. 1988, 60, 57. <https://doi.org/10.1351/pac198860010057>
20d. Bertz S. H., Smith R. A. J.: J. Am. Chem. Soc. 1989, 111, 8276. <https://doi.org/10.1021/ja00203a038>
21. Derome A. E.: Modern NMR Techniques for Chemistry Research, Chap. 6. Pergamon, Oxford 1987.
22. Still W. C., Kahn M., Mitra A.: J. Org. Chem. 1978, 43, 2923. <https://doi.org/10.1021/jo00408a041>
23. Méchin B., Naulet N.: J. Organomet. Chem. 1972, 39, 229. <https://doi.org/10.1016/S0022-328X(00)80444-1>
24. Watson S. C., Eastham J. F.: J. Organomet. Chem. 1967, 9, 165. <https://doi.org/10.1016/S0022-328X(00)92418-5>
25. When the cuprate in the conjugate addition to 4a was prepared from CuI and dimethyl sulfide, with or without chlorotrimethylsilane, a poorer yield of 5a was obtained than with the tributylphosphine complex. Attempts at utilizing mixed cuprates failed to produce significant amounts of conjugate addition products and returned 13 as the principal product. However, we did not observe the formation of the 20R epimer 5b in any of these experiments.