Collect. Czech. Chem. Commun. 2001, 66, 1665-1681
https://doi.org/10.1135/cccc20011665

Alkylation of Partially Protected Xylofuranoses and Tetritols with (2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptyl)oxirane and the Stability of Protecting Acetal Groups Towards Lewis Acid-Type Catalyst

Karel Kefurta,*, Jitka Moravcováa, Šárka Bambasováa, Kateřina Buchalováa, Barbora Vymětalíkováa, Zdeňka Kefurtováa, Jan Staněka and Oldřich Paletab

a Department of Chemistry of Natural Compounds, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
b Department of Organic Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic

References

1a. Riess J. G., Greiner J.: Carbohydr. Res. 2000, 327, 147. <https://doi.org/10.1016/S0008-6215(00)00012-4>
1b. Greiner J., Riess J. G., Vierling P. in: Organofluorine Compounds in Medicinal Chemistry and Biomedicinal Applications (R. Filler, Y. Kobayashi and L. Yagupolskii, Eds), p. 339. Elsevier, New York 1993.
1c. Riess J. G., Greiner J. in: Carbohydrates as Organic Raw Materials II (G. Descotes, Ed.), p. 209. VCH, Weinheim 1992.
1d. Riess J. G., Krafft M. P.: Biomaterials 1998, 19, 1529. <https://doi.org/10.1016/S0142-9612(98)00071-4>
2a. Riess J. G., Krafft M. P.: MRS Bull. 1999, 24, 42.
2b. Paleta O.: Chem. Listy 1997, 91, 646.
3. Milius A., Greiner J., Riess J. G.: New J. Chem. 1992, 16, 771.
4. Voiglio E. J., Zarif L., Gorry F. C., Krafft M. P., Margonari J., Martin X., Riess J. G., Dubernand J. M.: J. Surg. Res. 1996, 63, 439. <https://doi.org/10.1006/jsre.1996.0289>
5. Riess J. G., Greiner J., Abouhilale S., Milius A.: Prog. Coll. Polym. Sci. 1992, 88, 123. <https://doi.org/10.1007/BFb0114426>
6. Riess J. G., Greiner J., Milius A., Vierling P., Guillod F., Gaentzler S. (Alliance Pharmaceutical Corp., U.S.A.): U.S. 5679459 (1997); Chem. Abstr. 1997, 127, 307608.
7. Riess J. G., Greiner J., Milius A., Vierling P., Guillod F., Gaentzler S. (Alliance Pharmaceutical Corp., U.S.A.): U.S. 5846516 (1998); Chem. Abstr. 1999, 130, 52666.
8a. Církva V., Améduri B., Boutevin B., Paleta O.: J. Fluorine Chem. 1997, 83, 151. <https://doi.org/10.1016/S0022-1139(97)00018-3>
8b. Církva V., Gaboyard M., Paleta O.: J. Fluorine Chem. 2000, 102, 349. <https://doi.org/10.1016/S0022-1139(99)00301-2>
9. Církva V., Améduri B., Boutevin B., Paleta O.: J. Fluorine Chem. 1997, 84, 53. <https://doi.org/10.1016/S0022-1139(97)00032-8>
10. Kodíček M., Forman S., Církva V., Polák R., Kefurt K., Moravcová J., Paleta O.: Presented at 15th Int. Symp. Fluorine Chem., Vancouver 1997, BioC(1)C-5.
11. Církva V.: Ph.D. Thesis. Institute of Chemical Technology, Prague, Prague 1998.
12. Haga M., Takano M., Tejima S.: Carbohydr. Res. 1972, 21, 440. <https://doi.org/10.1016/S0008-6215(00)84925-3>
13. Moravcová J., Čapková J., Staněk J.: Carbohydr. Res. 1994, 263, 61. <https://doi.org/10.1016/0008-6215(94)00165-0>
14. Barker R., MacDonald D. L.: J. Am. Chem. Soc. 1960, 82, 2301. <https://doi.org/10.1021/ja01494a049>
15. Ball D. H., Jones J. K. N.: J. Chem. Soc. 1958, 905.
16. Micheel F., Schiller P.: Chem. Ber. 1968, 101, 3721. <https://doi.org/10.1002/cber.19681011110>
17. Gelas J.: Adv. Carbohydr. Chem. Biochem. 1981, 39, 71. <https://doi.org/10.1016/S0065-2318(08)60205-X>
18. Clode D. M.: Chem. Rev. (Washington, D. C.) 1979, 79, 491. <https://doi.org/10.1021/cr60322a002>
19a. Kocieński P. J.: Protecting Groups, p. 96. G. Thieme Verlag, Stuttgart 2000.
19b. Calinaud P., Gelas J. in: Preparative Carbohydrate Chemistry (S. Hanessian, Ed.), p. 3. Marcel Dekker Inc., New York 1996.
19c. Fleming I. in: Comprehensive Organic Synthesis (B. M. Trost, Ed.), Vol. 2, p. 576. Pergamon, Oxford 1991.
19d. García-Tellado F., de Armas P., Marrero- Tellado J. J.: Angew. Chem., Int. Ed. Engl. 2000, 39, 2727. <https://doi.org/10.1002/1521-3773(20000804)39:15<2727::AID-ANIE2727>3.0.CO;2-I>
20a. Schuerch C.: Adv. Carbohydr. Chem. Biochem. 1981, 39, 157. <https://doi.org/10.1016/S0065-2318(08)60206-1>
20b. Zollo P. H. A., Pougny J.-R., Sinaÿ P.: Tetrahedron Lett. 1979, 2447. <https://doi.org/10.1016/S0040-4039(01)86316-4>
20c. Timoshchuk V. A.: Zh. Obshch. Khim. 1987, 57, 2375.
21a. Uryu T., Yamanaka M., Date M., Ogawa M., Hatanaka K.: Macromolecules 1988, 21, 1916. <https://doi.org/10.1021/ma00185a006>
21b. Choi Y. S., Uryu T., Yoshida T.: Macromol. Chem. Phys. 1997, 198, 2875. <https://doi.org/10.1002/macp.1997.021980917>
22. Grabarnik M., Lemcoff N. G., Madar R., Abramson S., Weinman S., Fuchs B.: J. Org. Chem. 2000, 65, 1636. <https://doi.org/10.1021/jo9908952>
23. Laidlaw R. A.: J. Chem. Soc. 1952, 2941.
24. De Bernardo S., Tengi J. P., Sasso G. J., Weigle M.: J. Org. Chem. 1985, 50, 3457. <https://doi.org/10.1021/jo00219a008>
25. Ball D. H.: J. Org. Chem. 1966, 31, 220. <https://doi.org/10.1021/jo01339a048>
26. Carlson K. D., Smith C. R., Wolf I. A.: Carbohydr. Res. 1970, 13, 403. <https://doi.org/10.1016/S0008-6215(00)80597-2>
27. Haga M., Ness R. K., Fletcher H. G., Jr.: J. Org. Chem. 1968, 33, 1810. <https://doi.org/10.1021/jo01269a023>
28. Kent P. V., Wood K. R., Welch V. A.: J. Chem. Soc. 1964, 2493. <https://doi.org/10.1039/jr9640002493>