Collect. Czech. Chem. Commun. 2000, 65, 1205-1247
https://doi.org/10.1135/cccc20001205

Bioremediation of Heavy Metal Pollution Exploiting Constituents, Metabolites and Metabolic Pathways of Livings. A Review

Pavel Kotrbaa,b and Tomáš Rumla,*

a Department of Biochemistry and Microbiology, Prague Institute of Chemical Technology, Technická 3, 166 28 Prague, Czech Republic
b Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan

References

1. Hughes M. N.: The Inorganic Chemistry of Biological Processes. Wiley, Chichester 1990.
2. Morgan J. J., Stumm W. in: Metals and Their Compounds in the Environment (E. Merian, Ed.), p. 67. VCH Verlag, Weinheim 1991.
3. Gadd G. M.: FEMS Microbiol. Lett. 1992, 79, 197. <https://doi.org/10.1111/j.1574-6968.1992.tb05703.x>
4. Nieboer E., Richardson D. H. S.: Environ. Pollut. 1980, 1, 3. <https://doi.org/10.1016/0143-148X(80)90017-8>
5. Nuorteva P.: Metal Distribution Patterns and Forest Decline. Yliopistopaino University Press, Helsinki 1990.
6. Jones R. P., Gadd G. M.: Enzyme Microb. Technol. 1990, 12, 402. <https://doi.org/10.1016/0141-0229(90)90051-Q>
7. Avery S. V., Codd G. A., Gadd G. M.: J. Gen. Microbiol. 1991, 137, 405. <https://doi.org/10.1099/00221287-137-2-405>
8. Dedyukhina E. G., Eroshin V. K.: Process Biochem. (Oxford) 1991, 26, 31. <https://doi.org/10.1016/0032-9592(91)80005-A>
9. Huber A. L., Holbein B. E., Kidby D. K. in: Biosorption of Heavy Metals (B. Volesky, Ed.), p. 249. CRC Press, Boca Raton 1990.
10. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C.: Nature 1995, 373, 580. <https://doi.org/10.1038/373580a0>
11. Pearson M. A., Michel L. O., Hausinger R. P., Karplus P. A.: Biochemistry 1997, 36, 8164. <https://doi.org/10.1021/bi970514j>
12. Adman E. T., Godden J. W., Turley S.: J. Biol. Chem. 1995, 270, 27458. <https://doi.org/10.1074/jbc.270.46.27458>
13. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S.: Science 1995, 269, 5227. <https://doi.org/10.1126/science.7652554>
14. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agro A.: J. Mol. Biol. 1992, 224, 179. <https://doi.org/10.1016/0022-2836(92)90583-6>
15. Astatke M., Grindley N. D., Joyce C. M.: J. Mol. Biol. 1998, 278, 147. <https://doi.org/10.1006/jmbi.1998.1672>
16. Shiokawa D., Ohyana H., Yamada T., Tanuma S.: Biochem. J. 1997,326, 675. <https://doi.org/10.1042/bj3260675>
17. Brock T. D., Madigan M. T., Martinko J. M., Parker J.: Biology of Microorganisms, 7th ed. Prentice-Hall, New Jersey 1994.
18. Magoneth E., Hayen P., Delforge D., Delaive E., Remarcle J.: Biochem. J. 1992, 287, 361. <https://doi.org/10.1042/bj2870361>
19. Vallee B. L., Coleman J. E., Auld D. S.: Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 999. <https://doi.org/10.1073/pnas.88.3.999>
20. Thews G., Mutschler E., Vaupel P.: Human Anatomy, Physiology and Pathophysiology. Elsevier, Amsterdam 1985.
21. Voet D., Voet J. G.: Biochemistry, 2nd ed. J. Wiley, New York 1995.
22. Norris V., Grant S., Freestone P., Canvin J., Sheikh F. N., Toth I., Trinei M., Modha K., Norman R. I.: J. Bacteriol. 1996, 178, 367. <https://doi.org/10.1128/jb.178.13.3677-3682.1996>
23. Bott M., Pfister K., Burda P., Kalbermatter O., Woehlke G., Dimroth P.: Eur. J. Biochem. 1997, 250, 590. <https://doi.org/10.1111/j.1432-1033.1997.0590a.x>
24. Huder J. B., Dimroth P.: J. Biol. Chem. 1993, 268, 24564.
25. Gadd G. M. in: Molecular Biology and Biotechnology of Extremophiles (R. A. Herbert and R. J. Sharp, Eds), p. 225. Blackie, Glasgow 1992.
26. Rulíšek L., Vondrášek J.: J. Inorg. Biochem. 1998, 71, 115. <https://doi.org/10.1016/S0162-0134(98)10042-9>
27. Macaskie L. E., Dean A. C. R. in: Biosorption of Heavy Metals (B. Volesky, Ed.), p. 199. CRC Press, Boca Raton 1990.
28. Seiler H. G., Sigel H. (Eds): Handbook on Toxicity of Inorganic Compounds. Marcel Dekker, Basel 1988.
29. Nriagu J. O., Pacyna J. M.: Nature 1988, 333, 134. <https://doi.org/10.1038/333134a0>
30. Parr R. G., Pearson R. G.: J. Am. Chem. Soc. 1983, 105, 7512. <https://doi.org/10.1021/ja00364a005>
31. Klikorka J., Hájek B., Votinský J.: Obecná a anorganická chemie, 2nd ed. SNTL/Alfa, Praha 1989.
32. Martin R. B.: J. Chem. Educ. 1987, 402. <https://doi.org/10.1021/ed064p402>
33. Gadd G. M. in: Microbial Control of Pollution (J. C. Fry, G. M. Gadd, R. A. Herbert, C. W. Jones and I. A. Watson-Craik, Eds), p. 59. Cambridge University Press, Cambridge 1992.
34. Brooks R. R., Chambers M. F., Nicks L. J., Robinson B. H.: Trends Plant Sci. 1998, 3, 359. <https://doi.org/10.1016/S1360-1385(98)01283-7>
35. White C., Sayer J. A., Gadd G. M.: FEMS Microbiol. Rev. 1997, 20, 503. <https://doi.org/10.1111/j.1574-6976.1997.tb00333.x>
36. Mergeay M.: NATO ASI Ser., Ser. 3 1997, 19, 65.
37. Unz R. F., Shuttleworth K. L.: Curr. Opin. Biotechnol. 1996, 7, 307. <https://doi.org/10.1016/S0958-1669(96)80035-8>
38. Volesky B., Holan Z. R.: Biotechnol. Prog. 1995, 11, 235. <https://doi.org/10.1021/bp00033a001>
39. Kratochvil D., Volesky B.: Trends Biotechnol. 1998, 16, 291. <https://doi.org/10.1016/S0167-7799(98)01218-9>
40. Lovley D. R., Coates J. D.: Curr. Opin. Biotechnol. 1997, 8, 285. <https://doi.org/10.1016/S0958-1669(97)80005-5>
41. Gadd G. M., White C.: Trends Biotechnol. 1993, 11, 353. <https://doi.org/10.1016/0167-7799(93)90158-6>
42. Salt D. E., Smith R. D., Raskin I.: Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643. <https://doi.org/10.1146/annurev.arplant.49.1.643>
43. Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. C., Baker A. J. M.: Curr. Opin. Biotechnol. 1997, 8, 279. <https://doi.org/10.1016/S0958-1669(97)80004-3>
44. G. Berthon (Ed.): Handbook of Metal–Ligand Interactions on Biological Fluids, Vol. 1. Marcel Dekker, New York 1995.
45. Hellinga H. W. in: Protein Engineering: Principles and Practise (J. F. Cleland and C. S. Craik, Eds), p. 369. Wiley–Liss, New York 1996.
46. Kellner D. G., Maves S. A., Sligar S. G.: Curr. Opin. Biotechnol. 1997, 8, 274. <https://doi.org/10.1016/S0958-1669(97)80003-1>
47. Klaassen C. D., Liu J., Choudhuri S.: Annu. Rev. Pharmacol. Toxicol. 1999, 39, 267. <https://doi.org/10.1146/annurev.pharmtox.39.1.267>
48. Margoshes M., Vallee B. L.: J. Am. Chem. Soc. 1957, 79, 4813. <https://doi.org/10.1021/ja01574a064>
49. Kägi J. H. R.: Methods Enzymol. 1991, 205, 613. <https://doi.org/10.1016/0076-6879(91)05145-L>
50. Adams M. D., Kerlavage A. R., Fleischmann R. D., Fuldner R. A., Bult C. J., Lee N., et al.: GenBank accession No. T27991.
51. Glanville N., Durham D. M., Palmiter R. D.: Nature 1981, 292, 267. <https://doi.org/10.1038/292267a0>
52. Butt. T. R., Ecker D. J.: Microbiol. Rev. 1987, 51, 351.
53. Kawashima I., Kennedy T. D., Chino M., Lane B. G.: Eur. J. Biochem. 1992, 209, 971. <https://doi.org/10.1111/j.1432-1033.1992.tb17370.x>
54. Evans I. M., Gatehouse L. N., Gatehouse J. A., Robinson N. J., Croy R. R. D.: FEBS Lett. 1990, 262, 29. <https://doi.org/10.1016/0014-5793(90)80145-9>
55. Zhou J., Goldsbrough P. B.: Plant Cell 1994, 6, 875. <https://doi.org/10.1105/tpc.6.6.875>
56. Chatthai M., Kaukinen K. H., Tranbarger T. J., Gupta P. K., Misra S.: Plant Mol. Biol. 1997, 34, 243. <https://doi.org/10.1023/A:1005839832096>
57. Rauser W. E.: Plant Physiol. 1995, 109, 1141. <https://doi.org/10.1104/pp.109.4.1141>
58. Zenk M. H.: Gene 1996, 179, 21. <https://doi.org/10.1016/S0378-1119(96)00422-2>
59. Kotrba P., Macek T., Ruml T.: Collect. Czech. Chem. Commun. 1999, 64, 1057. <https://doi.org/10.1135/cccc19991057>
60. Robinson N. J., Tommey A. M., Kuske C., Jackson P. J.: Biochem. J. 1993, 295, 1. <https://doi.org/10.1042/bj2950001>
61. Templeton D. M., Cherian M. G.: Methods Enzymol. 1991, 205, 11. <https://doi.org/10.1016/0076-6879(91)05079-B>
62. Chubatsu L. S., Meneghini R.: Biochem. J. 1993, 291, 193. <https://doi.org/10.1042/bj2910193>
63. Lau J. C., Cherian M. G.: Biochem. Cell Biol. 1998, 76, 615. <https://doi.org/10.1139/bcb-76-4-615>
64. Cherian M. G.: Environ. Health Perspect. 1994, 102 (Suppl. 3), 131. <https://doi.org/10.2307/3431776>
65. Nielson K. B., Atkin C. L., Winge D. R.: J. Biol. Chem. 1985, 260, 5342.
66. Nielson K. B., Winge D. R.: J. Biol. Chem. 1985, 260, 8698.
67. Nielson K. B., Winge D. R.: J. Biol. Chem. 1983, 258, 13063.
68. Nielson K. B., Winge D. R.: J. Biol. Chem. 1984, 259, 4941.
69. Kurasaki M., Emoto T., Arias A. R. L., Okabe M., Yamasaki F., Oikawa S., Kojima Y.: Protein Eng. 1996, 9, 1173. <https://doi.org/10.1093/protein/9.12.1173>
70. Wang Y., Mackay E. A., Kurasaki M., Kägi J. H. R.: Eur. J. Biochem. 1994, 225, 449. <https://doi.org/10.1111/j.1432-1033.1994.00449.x>
71. Chang C.-C., Huang P. C.: Protein Eng. 1996, 9, 1165. <https://doi.org/10.1093/protein/9.12.1165>
72. Cols N., Romero-Isart N., Bofill R., Capdevila M., Gonzáles-Duarte P., Gonzáles-Duarte R., Atrian S.: Protein Eng. 1999, 12, 265. <https://doi.org/10.1093/protein/12.3.265>
73. Mehra R. K., Winge D. R.: J. Cell. Biochem. 1991, 45, 30. <https://doi.org/10.1002/jcb.240450109>
74. Reed R. H., Gadd G. M. in: Heavy Metal Tolerance in Plants: Evolutionary Aspects (A. J. Shaw, Ed.), p 105. CRC Press, Boca Raton 1991.
75. Huckle J. W., Morby A. P., Turner J. S., Robinson N. J.: Mol. Microbiol. 1993, 7, 177. <https://doi.org/10.1111/j.1365-2958.1993.tb01109.x>
76. White C. N., Rivin C. J.: GeneBank accession No. Z34469, 1994.
77. Dameron C. T., Winge D. R., George G. N., Sansone M., Hu S., Hamer D.: Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 6127. <https://doi.org/10.1073/pnas.88.14.6127>
78. Fürst P., Hu S., Hackett R., Hamer D.: Cell 1988, 55, 705. <https://doi.org/10.1016/0092-8674(88)90229-2>
79. White C. N., Rivin C. J.: GenGank accession No. Z34469.
80. Suh M. C., Choi D., Liu J. R.: Mol. Cells 1998, 8, 678.
81. Schäfer H. J., Greiner S., Rausch T., Haag-Kerwel A.: FEBS Lett. 1997, 404, 216. <https://doi.org/10.1016/S0014-5793(97)00132-4>
82. Whitelaw C. A., Le Huquet J. A., Thurman D. A., Tomsett A. B.: Plant Mol. Biol. 1997, 33, 503. <https://doi.org/10.1023/A:1005769121822>
83. Robinson N. J., Wilson J. R., Turner J. S.: Plant Mol. Biol. 1996, 30, 1169. <https://doi.org/10.1007/BF00019550>
84. Tommey A. M., Shi J., Lindsay W. P., Urwin P. E., Robinson N. J.: FEBS Lett. 1991, 292, 48. <https://doi.org/10.1016/0014-5793(91)80831-M>
85. Verkleij J. A. C., Schat H. in: Heavy Metal Tolerance in Plants: Evolutionary Aspects (A. J. Shaw, Ed.), p. 179. CRC Press, Boca Raton 1990.
86. Baker A. J. M., Walker P. L. in: Heavy Metal Tolerance in Plants: Evolutionary Aspects (A. J. Shaw, Ed.), p. 156. CRC Press, Boca Raton 1990.
87. Grill E., Löffler S., Winnacker E.-L., Zenk M. H.: Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6838. <https://doi.org/10.1073/pnas.86.18.6838>
88. Hayashi Y., Nakagawa C. W., Mutoh N. Isobe M., Goto T.: Biochem. Cell Biol. 1991, 69, 115. <https://doi.org/10.1139/o91-018>
89. Al-Lahham A., Rohde V., Heim P., Leucher R., Veeck J., Wunderlich K.W., Zimmermann M.: Yeast 1999, 15, 385. <https://doi.org/10.1002/(SICI)1097-0061(19990330)15:5<385::AID-YEA382>3.0.CO;2-6>
90. Strasdeit H., Duhme A.-K., Kneer R., Zenk M. H., Hermes C., Nolting H.-F.: J. Chem. Soc., Chem. Commun. 1991, 16, 1129. <https://doi.org/10.1039/c39910001129>
91. Dameron C. T., Reese R. N., Mehra R. K., Kortan A. R., Carroll P. J., Steigerwald M. L., Brus L. E., Winge D. R.: Nature 1989, 338, 596. <https://doi.org/10.1038/338596a0>
92. Bae W., Mehra R. K.: J. Inorg. Biochem. 1998, 69, 33. <https://doi.org/10.1016/S0162-0134(97)10006-X>
93. Mehra R. K., Mulchandani P., Hunter T. C.: Biochem. Biophys. Res. Commun. 1994, 200, 1193. <https://doi.org/10.1006/bbrc.1994.1577>
94. Salt D. E., Rauser W. E.: Plant Physiol. 1995, 107, 1293. <https://doi.org/10.1104/pp.107.4.1293>
95. Ortiz D. F., Ruscitti T., McCue K. F., Ow D. W.: J. Biol. Chem. 1995, 270, 4721. <https://doi.org/10.1074/jbc.270.9.4721>
96. Berka T., Shatzman A., Zimmerman J., Strickler J., Rosenberg M.: J. Bacteriol. 1988, 170, 21. <https://doi.org/10.1128/jb.170.1.21-26.1988>
97. Evans K. M., Gatehouse J. A., Lindsay W. P., Shi J., Tommey A. M., Robinson N. J.: Plant Mol. Biol. 1992, 20, 1019. <https://doi.org/10.1007/BF00028889>
98. Shi J., Lindsay W. P., Huckle J. W., Morby A. P., Robinson N. J.: FEBS Lett. 1992, 303, 159. <https://doi.org/10.1016/0014-5793(92)80509-F>
99. Lilius G., Persson M., Büflow L., Mosbach K.: J. Biochem. 1991, 198, 499.
100. Macek T., Macková M., Kotrba P., Truksa M., Singh Cundy A., Scouten W. H.: Proc. Int. Symp. Environmental Biotechnology, Oostende, 1997, (H. Verachtert and W. Verstraete, Eds), p. 263. Technologisch Institute, Oostende 1997.
101. Chen S.-L., Wilson D. B.: Biodegradation 1997, 8, 97. <https://doi.org/10.1023/A:1008233704719>
102. Chen S.-L., Wilson D. B.: Appl. Environ. Microbiol. 1997, 63, 2442.
103. Chen S.-L., Kim E.-K., Shuler M. L. Wilson D. B.: Biotechnol. Prog. 1998, 14, 667. <https://doi.org/10.1021/bp980072i>
104. Liang Zhu Y., Pilon-Smits E. A. H., Jouanin L., Terry N.: Plant Physiol. 1999, 119, 73. <https://doi.org/10.1104/pp.119.1.73>
105. Howden R., Goldsbrough P. B., Andersen C., Cobbet C. S.: Plant Physiol. 1995, 107, 1059. <https://doi.org/10.1104/pp.107.4.1059>
106. Clemens S., Kim E. J., Neumann D., Schroeder J. I.: EMBO J. 1999, 18, 3325. <https://doi.org/10.1093/emboj/18.12.3325>
107. Lefebvre D. D., Miki B. L., Laliberté J.-F.: Bio/Technology 1987, 5, 1053. <https://doi.org/10.1038/nbt1087-1053>
108. Maiti I. B., Wagner G. J., Yeargan R., Hunt A. G.: Plant Physiol. 1989, 91, 1020. <https://doi.org/10.1104/pp.91.3.1020>
109. Pan A., Tie F., Yang M., Luo J., Wang Z., Ding X., Li L., Chen Z., Ru B.: Protein Eng. 1993, 6, 755. <https://doi.org/10.1093/protein/6.7.755>
110. Pan A., Tie F., Duau Z., Yang M., Wang Z., Li L., Chen Z., Ru B.: Mol. Gen. Genet. 1994, 242, 666. <https://doi.org/10.1007/BF00283421>
111. Hasegawa I., Terada E., Sunairi M., Wakita H., Schinmachi F., Noguchi A., Nakajima M., Yazaki J.: Plant Soil 1997, 196, 277. <https://doi.org/10.1023/A:1004222612602>
112. Truksa M.: Ph.D. Thesis. Mendel University for Agriculture and Forestry, Brno 1997.
113. Schroeder J. I., Danuta M., Schachtman D. P., Clemens J. I.: PCT Int. Appl. WO9804700 A1 1998; Chem. Abstr. 1998, 128, 176940.
114. Yeargan R., Maiti I. B., Nielsen M. T., Hunt A. G., Wagner G. J.: Transgenic Res. 1992, 1, 261. <https://doi.org/10.1007/BF02525167>
115. Hattori J., Labbé H., Miki B. L.: Genome 1994, 37, 508. <https://doi.org/10.1139/g94-071>
116. Elmayan T., Tepfer M.: Plant J. 1994, 6, 433. <https://doi.org/10.1046/j.1365-313X.1994.06030433.x>
117. Sousa C., Kotrba P., Ruml T., Cebolla A., de Lorenzo V.: J. Bacteriol. 1998, 180, 2280.
118. Kotrba P., Pospíšil P., de Lorenzo V., Ruml T.: J. Recept. Signal Transduct. Res. 1999, 19, 703. <https://doi.org/10.3109/10799899909036681>
119. Jacobs F. A., Romeyer F. M., Beauchemin M., Brosseau R.: Gene 1989, 83, 95. <https://doi.org/10.1016/0378-1119(89)90407-1>
120. Holan Z. R., Volesky B., Prasetyo I.: Biotechnol. Bioeng. 1993, 41, 819. <https://doi.org/10.1002/bit.260410808>
121. Schneider I. A. H., Rubio J.: Environ. Sci. Technol. 1999, 33, 2213. <https://doi.org/10.1021/es981090z>
122. Brierley J. A., Brierley C. L., Goyak G. M. in: Fundamental and Applied Biohydrometallurgy (R. W. Lawrence, R. M. Branion and H. G. Ebner, Eds), p. 291. Elsevier, Amsterdam 1986.
123. Mattuschka B., Junghaus K., Straube G. in: Biohydrometallurgical Technologies (A. E. Torma, M. L. Apel and C. L. Brierley, Eds), Vol. 2, p. 125. The Minerals, Metals & Materials Soc., Warrendale 1993.
124. Fourest E., Roux J. C.: Appl. Microbiol. Biotechnol. 1992, 37, 399. <https://doi.org/10.1007/BF00211001>
125. Tobin J. M., Cooper D. G., Neufeld R. J.: Appl. Environ. Microbiol. 1984, 47, 821.
126. Holan Z. R., Volesky B.: Biotechnol. Bioeng. 1994, 41, 1001. <https://doi.org/10.1002/bit.260431102>
127. Holan Z. R., Volesky B.: Appl. Microbiol. Biotechnol. 1995, 43, 1125.
128. Friis N., Myers-Keith P.: Biotechnol. Bioeng. 1986, 28, 21. <https://doi.org/10.1002/bit.260280105>
129. Volesky B., May-Philips H. A.: Appl. Microbiol. Biotechnol. 1995, 42, 797. <https://doi.org/10.1007/BF00171964>
130. Fourest E., Serre A., Roux J. C.: Toxicol. Environ. Chem. 1996, 54, 1. <https://doi.org/10.1080/02772249609358291>
131. Fourest E., Volesky B.: Environ. Sci. Technol. 1996, 30, 277. <https://doi.org/10.1021/es950315s>
132. Beveridge T. J., Murray R. G. E.: J. Bacteriol. 1980, 141, 876.
133. Fourest E. Roux J. C.: FEMS Microbiol. Rev. 1994, 14, 325. <https://doi.org/10.1111/j.1574-6976.1994.tb00106.x>
134. Jeffers T. H., Bennet P. G., Corvin R. R.: Document No. RI9461. Bureau of Mines, UT, U.S.A. 1993.
135. Brierley C. L., Brierley J. A.: in: Biohydrometallurgical Technologies (A. E. Torma, M. L. Apel and C. L. Brierley, Eds), Vol. 2, p. 35. The Minerals, Metals & Materials Soc.,Warrendale 1993.
136. Bedell G. W., Darnall D. W. in: Biosorption of Heavy Metals (B. Volesky, Ed.), p. 313. CRC Press, Boca Raton 1990.
137. Sousa C., Cebolla A., de Lorenzo V.: Nat. Biotechnol. 1996, 14, 1017. <https://doi.org/10.1038/nbt0896-1017>
138. Xu Z., Lee S.Y.: Appl. Environ. Microbiol. 1999, 65, 5142.
139. Mejare M., Ljung S., Bulow L.: Protein Eng. 1998, 11, 498. <https://doi.org/10.1093/protein/11.6.489>
140. Valls M., Gonzales-Duarte R., Atrian S, de Lorenzo V.: Biochimie 1998, 80, 855. <https://doi.org/10.1016/S0300-9084(00)88880-X>
141. Kjaergaard K., Sorensen J. K., Schembri M. A., Klemm P.: Appl. Environ. Microbiol. 2000, 66, 10. <https://doi.org/10.1128/AEM.66.1.10-14.2000>
142. Samuelson P., Wernerus H., Svedberg M., Stahl S.: Appl. Environ. Microbiol. 2000, 66, 1243. <https://doi.org/10.1128/AEM.66.3.1243-1248.2000>
143. Kotrba P., Dolečková L., de Lorenzo V., Ruml T.: Appl. Environ. Microbiol. 1999, 65, 1092.
144. Pazirandeh M., Wells B. M., Ryan R. L.: Appl. Environ. Microbiol. 1998, 64, 4068.
145. Yamamura T., Watanabe T. in: Peptide Chemistry (N. Yanaihara, Ed.), p. 281. ESCOM, Leiden 1993.
146. Yamamura T., Sasaki Y, Ueki M. in: Peptide Chemistry (N. Yanaihara, Ed.), p. 284. ESCOM, Leiden 1993.
147. Kotrba P., Dolečková L., Pavlík M., Ruml T.: Biotechnol. Tech. 1996, 10, 773. <https://doi.org/10.1007/BF00222564>
148. Haymore B. L., Bild G. S., Salsgiver W. J., Staten N. R., Krivi G. G.: Methods Companion Methods Enzymol. 1992, 4, 25. <https://doi.org/10.1016/1046-2023(92)90054-C>
149. Bianchi E., Folgory A., Wallace A., Nicotra M., Acali S., Phalipon A., Barbato G., Bazzo R., Cortese R., Felici F., Pessi A.: J. Mol. Biol. 1995, 247, 154. <https://doi.org/10.1006/jmbi.1994.0129>
150. Brown S.: Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 8651. <https://doi.org/10.1073/pnas.89.18.8651>
151. Brown S.: Nat. Biotechnol. 1997, 15, 269. <https://doi.org/10.1038/nbt0397-269>
152. Schreuder M. P., Mooren A. T. A., Toschka H. Y., Verrips C. T., Klis F. M.: Trends Biotechnol. 1996, 14, 115. <https://doi.org/10.1016/0167-7799(96)10017-2>
153. Macaskie L. E., Bonthrone K. M., Rouch D. A.: FEMS Microbiol. Lett. 1994, 121, 141. <https://doi.org/10.1111/j.1574-6968.1994.tb07090.x>
154. Basnakova G., Stephens E. R., Thaller M. C., Rossolini G. M., Macaskie L. E.: Appl. Microbiol. Biotechnol. 1998, 50, 266. <https://doi.org/10.1007/s002530051288>
155. Jeong B. C., Hawes C., Bonthrone K. M., Macaskie L. E.: Microbiology 1997, 143, 2497. <https://doi.org/10.1099/00221287-143-7-2497>
156. Jeong B. C., Poole P. S., Willis A. C., Macaskie L. E.: Arch. Microbiol. 1998, 169, 166. <https://doi.org/10.1007/s002030050556>
157. Hallett D. S., Clark P., Macaskie L. E.: FEMS Microbiol. Lett. 1991, 62, 7. <https://doi.org/10.1111/j.1574-6968.1991.tb04407.x>
158. Finlay J. A., Allan V. J., Conner A., Callow M. E., Basnakova G., Macaskie L. E.: Biotechnol. Bioeng. 1999, 63, 87. <https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<87::AID-BIT9>3.0.CO;2-0>
159. Macaskie L. E.: J. Chem. Technol. Biotechnol. 1990, 49, 357. <https://doi.org/10.1002/jctb.280490408>
160. Macaskie L. E.: Science 1992, 257, 782. <https://doi.org/10.1126/science.1496397>
161. Macaskie L. E., Dean A. C. R.: Environ. Technol. Lett. 1984, 5, 177. <https://doi.org/10.1080/09593338409384266>
162. Macaskie L. E., Dean A. C. R.: Biotechnol. Lett. 1985, 7, 457. <https://doi.org/10.1007/BF01199858>
163. Macaskie L. E., Jeong B. C., Tolley M. R.: FEMS Microbiol. Lett. 1994, 14, 351. <https://doi.org/10.1111/j.1574-6976.1994.tb00109.x>
164. Montgomery D. M., Dean A. C., Wiffen P., Macaskie L. E.: Microbiology 1995, 141, 2433. <https://doi.org/10.1099/13500872-141-10-2433>
165. Thomas R. A. P., Macaskie L. E.: Environ. Sci. Tech. 1996, 30, 2371. <https://doi.org/10.1021/es950861l>
166. Diels L., VanRoy S., Taghavi S., Doyen W., Leysen R., Mergeay M. in: Biohydrometallurgical Technologies (A. E. Torma, M. L. Apel and C. L. Brierley, Eds), Vol. 2, p. 133. The Minerals, Metals & Materials Soc., Warrendale 1993.
167. Diels L., VanRoy S., Mergeay M., Doyen W., Taghavi S., Leysen R. in: Effective Membrane Processes: New Perspectives (Paterson, Ed.), p. 275. Kluwer Academic Publiskers, Dordrecht 1993.
168. Diels L., Dong Q., van der Lelie D., Baeyens W., Mergeay M.: J. Ind. Microbiol. 1995, 14, 142. <https://doi.org/10.1007/BF01569896>
169. Nies D. H.: Plasmid 1992, 27, 17. <https://doi.org/10.1016/0147-619X(92)90003-S>
170. Silver S., Walderhaug M.: Microbiol. Rev. 1992, 56, 195.
171. Nies D. H.: J. Bacteriol. 1992, 174, 8102. <https://doi.org/10.1128/jb.174.24.8102-8110.1992>
172. Grosse C., Grass G., Anton A., France S., Santos A. N., Lawley B., Brown N. L., Nies D. H.: J. Bacteriol. 1999, 181, 2385.
173. Rensing C., Pribyl T., Nies D. H.: J. Bacteriol. 1997, 179, 6871. <https://doi.org/10.1128/jb.179.22.6871-6879.1997>
174. Nies D. H.: J. Bacteriol. 1995, 177, 2707. <https://doi.org/10.1128/jb.177.10.2707-2712.1995>
175. van der Lelie D., Schwuchow T., Schwiedetzky U., Wuertz S., Baeyens W., Mergeay M., Nies D. H.: Mol. Microbiol. 1997, 23, 493. <https://doi.org/10.1046/j.1365-2958.1997.d01-1866.x>
176. Springael D., Diels L., Hooyberghs L., Kreps S., Mergeay M.: Appl. Environ. Microbiol. 1993, 59, 334.
177. Springael D., Diels L., Mergeay M.: Biodegradation 1994, 5, 343. <https://doi.org/10.1007/BF00696469>
178. White C., Gadd G. M.: Microbiology 1996, 143, 2197. <https://doi.org/10.1099/13500872-142-8-2197>
179. White C., Gadd G. M.: Microbiology 1998, 144, 1407. <https://doi.org/10.1099/00221287-144-5-1407>
180. Wood J. M., Wang H. K.: Environ. Sci. Technol. 1983, 17, 582. <https://doi.org/10.1021/es00118a002>
181. Barnes L. J.: Trans. Inst. Min. Metall., Sec. C 1996, 105, C113.
182. Barnes L. J., Janssen F. J., Sherren J., Versteegh J. H., Koch R. O., Scheeren P. J. H.: Trans. Inst. Chem. Eng. 1991, 69, 184.
183. Williams J. W., Silver S.: Enzyme Microb. Technol. 1984, 6, 530. <https://doi.org/10.1016/0141-0229(84)90081-4>
184. Hamlett N. V., Landale E. C., Davis B. H., Summers A. O.: J. Bacteriol. 1992, 174, 6377. <https://doi.org/10.1128/jb.174.20.6377-6385.1992>
185. Moeby A. P., Hobman J. L., Brown N. L.: Mol. Microbiol. 1995, 17, 25.
186. Uno Y., Kiyono M., Tezuka T., Pan-Hou H.: Biol. Pharm. Bull. 1997, 20, 107. <https://doi.org/10.1248/bpb.20.107>
187. Sahlman L., Wong W., Powlowski J.: J. Biol. Chem. 1997, 272, 29518. <https://doi.org/10.1074/jbc.272.47.29518>
188. Hansen C. L., Zwolinski G., Martin D., Williams J. W.: Biotechnol. Bioeng. 1984, 26, 1330. <https://doi.org/10.1002/bit.260261110>
189. Blake R. C., Choate D. M., Bardhan S., Revis N., Barton L. L., Zocco T. G.: Environ. Toxicol. Chem. 1993, 12, 1365. <https://doi.org/10.1002/etc.5620120806>
190. Brunke M., Deckwer W.-D., Frischmuth A., Horn J. M., Lunsdorf H., Rhode M., Rohricht M., Timmis K. N., Weppen P.: FEMS Microbiol. Rev. 1993, 11, 145. <https://doi.org/10.1111/j.1574-6976.1993.tb00278.x>
191. Horn J. M., Brunke M., Deckwer W.-D., Timmis K. N.: Appl. Environ. Microbiol. 1994, 60, 357.
192. Rugh C. L., Wilde H. D., Stack N. M., Thompson D. M., Summers A. O., Meagher R. B.: Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3182. <https://doi.org/10.1073/pnas.93.8.3182>
193. Rugh C. L., Senecoff J. F., Meagher R. B., Merkle S. A.: Nat. Biotechnol. 1998, 16, 925. <https://doi.org/10.1038/nbt1098-925>
194. Gadd G. M.: FEMS Microbiol Rev. 1993, 11, 297. <https://doi.org/10.1111/j.1574-6976.1993.tb00003.x>
195. Thayer J. S.: Appl. Organomet. Chem. 1989, 3, 123. <https://doi.org/10.1002/aoc.590030202>
196. Gao S. Tanji K. K.: J. Environ. Qual. 1995, 24, 191. <https://doi.org/10.2134/jeq1995.00472425002400010026x>
197. Sreekrishnan T. R., Tyagi R. D.: Process Biochem. 1995, 30, 69. <https://doi.org/10.1016/0032-9592(95)87010-5>
198. Kasan H. C.: C. R. Environ. Sci. Technol. 1993, 23, 79. <https://doi.org/10.1080/10643389309388442>
199. Caccavo F. Jr., Coates J. D., Rosello-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J.: Arch. Microbiol. 1996, 165, 370. <https://doi.org/10.1007/s002030050340>
200. Lloyd J. R., Macaskie L. E.: Appl. Environ. Microbiol. 1996, 62, 578.
201. Rittle K. A., Drever J. I., Colberg P. J. S.: Geomicrobiology 1995, 13, 1. <https://doi.org/10.1080/01490459509378000>
202. Cantafio A. W., Hagen K. D., Lewis G. E., Bledsoe T. L., Nunan K. M., Macy J. M.: Appl. Environ. Microbiol. 1996, 62, 3298.
203. Lovley D. R.: Annu. Rev. Microbiol. 1993, 14, 159.
204. Shen H., Pritchard H., Sewell G. W.: Biotechnol. Bioeng. 1996, 52, 357. <https://doi.org/10.1002/(SICI)1097-0290(19961105)52:3<357::AID-BIT1>3.0.CO;2-J>
205. Shen H., Pritchard H., Sewell G. W.: Environ. Sci. Technol. 1996, 30, 1667. <https://doi.org/10.1021/es950657y>
206. Fuji E., Toda K., Ohtake H.: J. Ferment. Bioeng. 1990, 69, 365. <https://doi.org/10.1016/0922-338X(90)90246-S>
207. Komori K., Rivas A., Toda K., Ohtake H.: Biotechnol. Bioeng. 1990, 35, 951. <https://doi.org/10.1002/bit.260350914>
208. Koren’kov V. N., Vorobyova L. F. in: Microbial Methods of Enviromental Pollution Control (V. A. Lambina, Ed.), p. 50. Academy of Sciences of U.S.S.R., Pushchino 1979.
209. Turick C. E., Graves C., Apel W. A.: Bioremediation J. 1998, 2, 1. <https://doi.org/10.1080/10889869891214169>
210. Rege M. A., Petersen J. N., Johnstone D. L., Turick C. E., Yonge D. R., Apel W. A.: Biotechnol. Lett. 1997, 19, 691. <https://doi.org/10.1023/A:1018355318821>
211. Turick C. E., Camp C. E., Apel W. A.: Appl. Biochem. Biotechnol. 1997, 63, 871. <https://doi.org/10.1007/BF02920483>
212. Houba C., Remarcle J.: Appl. Environ. Microbiol. 1984, 47, 1158.
213. Gould M. S., Genetelli E. J.: Water Res. 1984, 18, 123. <https://doi.org/10.1016/0043-1354(84)90057-5>
214. Kodukula P. S., Patterson J. W., Surampalli R. Y.: Biotechnol. Bioeng. 1994, 43, 874. <https://doi.org/10.1002/bit.260430906>
215. Chudoba J., Hejzlar J., Doležal M.: Water Res. 1986, 20, 1223. <https://doi.org/10.1016/0043-1354(86)90150-8>
216. Hejzlar J., Chudoba J.: Water Res. 1986, 20, 1217. <https://doi.org/10.1016/0043-1354(86)90149-1>
217. Zita A., Hermansson M.: Appl. Environ. Microbiol. 1997, 63, 1168.
218. Jorand F., Boue-Bigne F., Block J. C., Urbain V.: Water Sci. Technol. 1998, 37, 307. <https://doi.org/10.1016/S0273-1223(98)00123-1>
219. Keiding K., Nielsen P. H.: Water Res. 1997, 31, 1665. <https://doi.org/10.1016/S0043-1354(97)00011-0>
220. Higgins M. J., Novak J. T. J.: Environ. Engineer. 1997, 123, 485.
221. Norberg A. B., Persson H.: Biotechnol. Bioeng. 1984, 26, 239. <https://doi.org/10.1002/bit.260260307>
222. Atkinson B. W., Bux F., Kasan H. C.: Water Sci. Technol. 1996, 34, 9. <https://doi.org/10.1016/S0273-1223(96)00781-0>
223. Atkinson B. W., Bux F., Kasan H. C.: Water SA 1998, 24, 129.
224. Gale N. L. in: Biotechnology for the Mining, Metal Refining and Fossil Fuel Industries (H. L. Erlich and D. S. Holmes, Eds), p. 171. John Wiley, New York 1985.
225. Kalin M., Fyson A., Smith M. P. in: Biohydrometallurgical Technologies (A. E. Torma, M. L. Apel and C. L. Brierley, Eds), Vol. 2, p. 125. The Minerals, Metals & Materials Soc.,Warrendale 1993.
226. Wieder R. K.: Wetlands 1989, 9, 299. <https://doi.org/10.1007/BF03160750>
227. Webb J. S., McGinness S., Lappin-Scott H. M.: J. Appl. Microbiol. 1998, 84, 240. <https://doi.org/10.1046/j.1365-2672.1998.00337.x>
228. Hawkins W. B., Rodgers J. H. Jr., Gillespie W. B. Jr., Dunn A. W., Dorn P. B., Cano M. L.: Ecotoxicol. Environ. Safety 1997, 36, 238. <https://doi.org/10.1006/eesa.1996.1505>
229. Hruby T.: Environ. Manage. 1999, 23, 75. <https://doi.org/10.1007/s002679900168>
230. MacDonald J. A: Environ. Sci. Technol. 1997, 31, 560A. <https://doi.org/10.1021/es972607u>
231. Valls M., de Lorenzo V., Gonzalez-Duarte R., Atrian S.: J. Inorg. Biochem. 2000 79, 219. <https://doi.org/10.1016/S0162-0134(99)00170-1>
232. Valls M., Atrian S., de Lorenzo V., Fernandez L. A.: Nat. Biotechnol. 2000 18, 661. <https://doi.org/10.1038/76516>
233. Bontidean I., Lloyd J. R., Hobman J. L., Wilson J. R., Csoregi E., Mattiasson B., Brown N. L.: J. Inorg. Biochem. 2000 79, 225. <https://doi.org/10.1016/S0162-0134(99)00234-2>
234. Bonthrone K. M., Quarmby J., Hewitt C. J., Allan V. J. M., Paterson-Beedle M., Kennedy J. F., Macaskie L. E.: Environ. Technol. 2000, 21, 123. <https://doi.org/10.1080/09593330.2000.9618893>
235. Kashefi K., Lovley D. R.: Appl. Environ. Microbiol. 2000, 66, 1050. <https://doi.org/10.1128/AEM.66.3.1050-1056.2000>
236. Francis C. A., Obraztsova A. Y., Tebo B. M.: Appl. Environ. Microbiol. 2000, 66, 543. <https://doi.org/10.1128/AEM.66.2.543-548.2000>
237. Roden E. E., Urrutia M. M., Mann C. J.: Appl. Environ. Microbiol. 2000, 66, 1062. <https://doi.org/10.1128/AEM.66.3.1062-1065.2000>
238. Macy J. M., Santini J. M., Pauling B. V., O’Neill A. H., Sly L. I.: Arch. Microbiol. 2000, 173, 49. <https://doi.org/10.1007/s002030050007>
239. Hard B. C., Walther C., Babel W.: Geomicrobiol. J. 1999, 16, 267.
240. Gadd G. M.: Curr. Opin. Biotechnol. 2000, 11, 271. <https://doi.org/10.1016/S0958-1669(00)00095-1>
241. Cobbett C. S.: Plant Physiol. 2000, 123, 825. <https://doi.org/10.1104/pp.123.3.825>
242. Cobbett C. S.: Trends Plant Sci. 1999, 4, 335. <https://doi.org/10.1016/S1360-1385(99)01465-X>
243. Cobbett C. S.: Curr. Opin. Plant Biol. 2000, 3, 211. <https://doi.org/10.1016/S1369-5266(00)80067-9>