Collect. Czech. Chem. Commun. 2000, 65, 844-861
https://doi.org/10.1135/cccc20000844

Electrochemical Reduction of Allyl Ethers in the Presence of Nickel Complexes: A Review of Synthetic Applications

Sandra Oliveroa, Delphine Francoa, Jean-Claude Clinetb and Elisabet Duñacha,*

a Laboratoire de Chimie Bio-organique, associé au CNRS, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France
b Institut de Chimie Moléculaire, associé au CNRS, Université Paris-Sud, 95405 Orsay, France

References

1. Nédélec J. Y., Périchon J., Troupel M. in: Organic Electroreductive Coupling Reactions Using Transition Metal Complexes as Catalyst, Topics in Current Chemistry (E. Steckhan, Ed.), p. 141. Springer, Berlin 1997.
2a. Troupel M., Rollin Y., Sibille S., Fauvarque J. F., Périchon J.: J. Organomet. Chem. 1980, 202, 435. <https://doi.org/10.1016/S0022-328X(00)81872-0>
2b. Troupel M., Rollin Y., Périchon J., Fauvarque J. F.: New J. Chem. 1981, 5, 62.
3a. Amatore C., Jutand A.: Organometallics 1988, 7, 203.
3b. Amatore C., Jutand A.: J. Electroanal. Chem. 1991, 306, 125. <https://doi.org/10.1016/0022-0728(91)85226-F>
4a. Fauvarque J. F., Chevrot C., Jutand A., François M., Périchon J.: J. Organomet. Chem. 1984, 264, 273. <https://doi.org/10.1016/0022-328X(84)85153-0>
4b. Fauvarque J. F., Jutand A., François M.: New J. Chem. 1986, 10, 119.
4c. Fauvarque J. F., Jutand A., François M.: J. Appl. Electrochem. 1988, 18, 109. <https://doi.org/10.1007/BF01016213>
4d. Fauvarque J. F., Jutand A., François M.: J. Appl. Electrochem. 1988, 18, 116. <https://doi.org/10.1007/BF01016214>
5a. Meyer G., Rollin Y., Périchon J.: J. Organomet. Chem. 1991, 56, 2018.
5b. Derien S., Clinet J. C., Duñach E., Périchon J.: J. Org. Chem. 1993, 58, 2578. <https://doi.org/10.1021/jo00061a038>
6a. Durandetti S., Sibille S., Périchon J.: J. Org. Chem. 1989, 54, 2198. <https://doi.org/10.1021/jo00270a033>
6b. Conan A., Sibille S., Périchon J.: J. Org. Chem. 1990, 56, 2018. <https://doi.org/10.1021/jo00006a012>
7. Gosden C., Healy K. P., Pletcher D.: J. Chem. Soc., Dalton Trans. 1978, 972. <https://doi.org/10.1039/dt9780000972>
8. Healy K. P., Pletcher D.: J. Organomet. Chem. 1978, 161, 109. <https://doi.org/10.1016/S0022-328X(00)80916-X>
9. Kimura M., Miyahara H., Moritani N., Sawaki Y.: J. Org. Chem. 1990, 55, 3897. <https://doi.org/10.1021/jo00299a037>
10. Duñach E., Périchon J.: J. Organomet. Chem. 1988, 352, 239. <https://doi.org/10.1016/0022-328X(88)83038-9>
11. Garnier L., Rollin Y., Périchon J.: New J. Chem. 1989, 13, 53.
12. Gosmini C., Lasry S., Nédélec J. Y., Périchon J.: Tetrahedron 1998, 54, 1289. <https://doi.org/10.1016/S0040-4020(97)10225-3>
13. Olivero S., Duñach E.: J. Chem. Soc., Chem. Commun. 1995, 2497. <https://doi.org/10.1039/c39950002497>
14a. Sock O., Troupel M., Périchon J.: Tetrahedron Lett. 1985, 26, 1509. <https://doi.org/10.1016/S0040-4039(00)98538-1>
14b. Chaussard J., Folest J. C., Nédelec J. Y., Périchon J., Sibille S., Troupel M.: Synthesis 1990, 369. <https://doi.org/10.1055/s-1990-26880>
15. Silvestri G., Gambino S., Filardo S., Gullota G.: Angew. Chem., Int. Ed. Engl. 1984, 23, 979. <https://doi.org/10.1002/anie.198409791>
16. Olivero S.: Ph.D. Thesis. University of Nice, Nice 1998.
17. Gigg J., Gigg R.: J. Chem. Soc. C 1966, 82. <https://doi.org/10.1039/j39660000082>
18. Corey E. J., Suggs J. W.: J. Org. Chem. 1973, 38, 3224. <https://doi.org/10.1021/jo00958a032>
19a. Beugelmans R., Bourdet S., Bigot A., Zhu J.: Tetrahedron Lett. 1994, 35, 4349. <https://doi.org/10.1016/S0040-4039(00)73351-X>
19b. Zhang H. X., Guibé F., Balavoine G.: Tetrahedron Lett. 1988, 29, 619. <https://doi.org/10.1016/S0040-4039(00)80165-3>
20a. Mairanovsky V. G.: Angew. Chem., Int. Ed. Engl. 1976, 15, 281. <https://doi.org/10.1002/anie.197602811>
20b. Montenegro M. I.: Electrochim. Acta 1986, 31, 607. <https://doi.org/10.1016/0013-4686(86)87027-X>
21. Steckhan E.: Angew. Chem., Int. Ed. Engl. 1986, 25, 683. <https://doi.org/10.1002/anie.198606831>
22. Espanet B., Duñach E., Périchon J.: Tetrahedron Lett. 1992, 33, 2485. <https://doi.org/10.1016/S0040-4039(00)92221-4>
23. Olivero S., Duñach E.: Tetrahedron Lett. 1997, 38, 6193. <https://doi.org/10.1016/S0040-4039(97)01396-8>
24a. Hegedus L. S., Wagner S. D., Waterman E. L., Siirala-Hansen K.: J. Org. Chem. 1975, 40, 593. <https://doi.org/10.1021/jo00893a012>
24b. Hegedus L. S., Thompson D. H. P.: J. Am. Chem. Soc. 1985, 107, 5663. <https://doi.org/10.1021/ja00306a012>
25a. Ishizu J., Yamamoto T., Yamamoto A.: Chem. Lett. 1976, 1091. <https://doi.org/10.1246/cl.1976.1091>
25b. Yamamoto T., Ishizu J., Yamamoto A.: J. Am. Chem. Soc. 1981, 103, 6863. <https://doi.org/10.1021/ja00413a014>
26a. Semmelhack M. F.: Org. React. 1972, 19, 115.
26b. Eisch J. J., Im K. R.: J. Organomet. Chem. 1977, 139, C45. <https://doi.org/10.1016/S0022-328X(00)85476-5>
27a. Derien S., Duñach E., Périchon J.: J. Am. Chem. Soc. 1991, 133, 22.
27b. Derien S., Duñach E., Périchon J.: J. Am. Chem. Soc. 1991, 133, 8447. <https://doi.org/10.1021/ja00022a037>
27c. Garnier L., Rollin Y., Périchon J.: New J. Chem. 1989, 13, 53.
28. Daniele S., Ugo P., Bontempelli G., Fiorani M.: J. Electroanal. Chem. Interfacial Electrochem. 1987, 219, 259. <https://doi.org/10.1016/0022-0728(87)85044-1>
29. Tokuda M., Satoh S., Suginome H.: J. Org. Chem. 1989, 54, 2198. <https://doi.org/10.1021/jo00284a040>
30. Torii S., Uneyama K., Matsuda H.: Tetrahedron Lett. 1984, 25, 6017.
31. Hebri H., Duñach E., Périchon J.: Tetrahedron Lett. 1993, 34, 1475. <https://doi.org/10.1016/S0040-4039(00)60322-2>
32. Sibille S., d′Incan E., Leport L., Massebiau M., Périchon J.: Tetrahedron Lett. 1987, 28, 55. <https://doi.org/10.1016/S0040-4039(00)95647-8>
33. Franco D., Olivero S., Duñach E.: Electrochim. Acta 1997, 42, 2159. <https://doi.org/10.1016/S0013-4686(97)85493-X>
34. Franco D., Duñach E.: Tetrahedron Lett. 1999, 40, 2951. <https://doi.org/10.1016/S0040-4039(99)00357-3>
35. Ozaki S., Matsushita H., Ohmori H.: J. Chem. Soc., Chem. Commun. 1992, 1120. <https://doi.org/10.1039/c39920001120>
36. Olivero S., Duñach E.: Tetrahedron Lett. 1995, 36, 4425. <https://doi.org/10.1016/0040-4039(95)00782-8>
37. Mubarak M. S., Peters D. G.: J. Electroanal. Chem. 1992, 332, 127. <https://doi.org/10.1016/0022-0728(92)80345-5>
38. Ozaki S., Matsushita H., Ohmori H.: J. Chem. Soc., Perkins Trans. 1 1993, 649. <https://doi.org/10.1039/p19930000649>
39. Irhara M., Katsumata A., Setsu F., Tokunaga Y., Fukumoto K.: J. Org. Chem. 1996, 61, 677. <https://doi.org/10.1021/jo951653e>
40a. Ozaki S., Horiguchi H., Matsushita H., Ohmori H.: Tetrahedron Lett. 1994, 35, 5. <https://doi.org/10.1016/S0040-4039(00)75801-1>
40b. Ozaki S., Horiguchi H., Matsushita H., Ohmori H.: Tetrahedron Lett. 1994, 35, 725. <https://doi.org/10.1016/S0040-4039(00)75801-1>
41. Clinet J. C., Duñach E.: J. Organomet. Chem. 1995, C48, 503.
42. Gomez M., Muller G., Paneyella D., Rocamora M., Duñach E., Clinet J. C.: Organometallics 1997, 16, 5900. <https://doi.org/10.1021/om9707026>
43. Olivero S., Duñach E.: Eur. J. Org. Chem. 1999, 1885. <https://doi.org/10.1002/(SICI)1099-0690(199908)1999:8<1885::AID-EJOC1885>3.0.CO;2-U>
44. Fischer B. J., Eisenberg R.: J. Am. Chem. Soc. 1980, 102, 7361. <https://doi.org/10.1021/ja00544a035>
45a. Beley M., Rollin J. P., Ruppert R., Sauvage J. P.: J. Chem. Soc., Chem. Commun. 1984, 1315. <https://doi.org/10.1039/c39840001315>
45b. Beley M., Rollin J. P., Ruppert R., Sauvage J. P.: J. Am. Chem. Soc. 1986, 108, 7461. <https://doi.org/10.1021/ja00284a003>
46a. Troupel M., Rollin Y., Périchon J., Fauverque J. F.: New J. Chem. 1991, 5, 62.
46b. Fauvarque J. F., Chevrot C., Jutand A., François M., Périchon J.: J. Organomet. Chem. 1984, 264, 273. <https://doi.org/10.1016/0022-328X(84)85153-0>
46c. Amatore C., Jutand A.: J. Am. Chem. Soc. 1991, 113, 2819. <https://doi.org/10.1021/ja00008a003>
46d. Amatore C., Jutand A.: J. Electroanal. Chem. 1991, 306, 141. <https://doi.org/10.1016/0022-0728(91)85227-G>
47. Olivero S., Rolland J. P., Duñach E.: Organometallics 1998, 17, 3747. <https://doi.org/10.1021/om980247t>
48. Gosden C., Pletcher D.: J. Organomet. Chem. 1980, 186, 401. <https://doi.org/10.1016/S0022-328X(00)82420-1>
49. Heck R. F.: Acc. Chem. Res. 1979, 12, 146. <https://doi.org/10.1021/ar50136a006>
50. Tanaka H., Ren Q., Torii S. in: Novel Trends in Electroorganic Synthesis (S. Torii, Ed.), p. 195. Kodanska, Tokyo 1995.
51. Franco D., Panyella D., Rocamora M., Gomez M., Clinet J. C., Muller G., Duñach E.: Tetrahedron Lett. 1999, 40, 5685. <https://doi.org/10.1016/S0040-4039(99)01071-0>
52. Torii S., Tanaka H., Morisaki K.: Tetrahedron Lett. 1995, 26, 1655. <https://doi.org/10.1016/S0040-4039(00)98576-9>
53. Inokuchi T., Kawafuchi H., Aoki K., Yoshida A., Torii S.: Bull. Chem. Soc. Jpn. 1994, 67, 595. <https://doi.org/10.1246/bcsj.67.595>
54. Gao J., Rusling J. F.: J. Org. Chem. 1998, 63, 218. <https://doi.org/10.1021/jo971897u>
55. Koppang M. D., Ross G. A., Woolsey N. F., Bartak E.: J. Am. Chem. Soc. 1986, 108, 1441. <https://doi.org/10.1021/ja00267a013>
56. Grimshaw J. in: Novel Trends in Electroorganic Synthesis (S. Torii, Ed.), p. 268. Kodanska, Tokyo 1998.
57. Pregosin P. S., Salzmann R.: Coord. Chem. Rev. 1996, 155, 35. <https://doi.org/10.1016/S0010-8545(96)90176-9>
58. Trost B. M., Van Vranken D. L.: Chem. Rev. 1996, 96, 395. <https://doi.org/10.1021/cr9409804>
59. Beckwith A. J. L., Meijs G. F.: J. Chem. Soc., Chem. Commun. 1981, 136. <https://doi.org/10.1039/c39810000136>
60. Giese B.: Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds. Pregamon Press, London 1986.
61. Molander G. A., Harring L.: J. Org. Chem. 1990, 55, 6171. <https://doi.org/10.1021/jo00312a025>
62. Curran D. P., Totleben M. J.: J. Am. Chem. Soc. 1992, 114, 6050. <https://doi.org/10.1021/ja00041a024>