Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1999, 64, 865-882
https://doi.org/10.1135/cccc19990865

Synthesis of the New 2-Alkyl-nido-2,7,10-C3B8H11 Tricarbaborane by Protonation of [7-Alkyl-nido-7,8,10-C3B8H10]-: A Reversible Cage-Carbon Rearrangement

Alexandra M. Shedlow and Larry G. Sneddon*

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, U.S.A.

Crossref Cited-by Linking

  • Bakardjiev Mario, Holub Josef, Hnyk Drahomír, Štíbr Bohumil, Růžičková Zdeňka, Růžička Aleš: An unexpected rearrangement of carbon vertexes in the tricarbollide series. Asymmetrical 7-aryl-nido-7,8,9-C3B8H11 derivatives. Journal of Organometallic Chemistry 2016, 805, 117. <https://doi.org/10.1016/j.jorganchem.2016.01.006>
  • Bakardjiev Mario, Holub Josef, Macháček Jan, Hnyk Drahomír, Štíbr Bohumil, Růžičková Zdeňka, Růžička Aleš: Unique Stereocontrol in Carborane Chemistry: Skeletal Alkylcarbonation (SAC) versus Exoskeletal Alkylmethylation (EAM) Reactions. Angewandte Chemie 2015, 127, 5019. <https://doi.org/10.1002/ange.201500824>
  • Bakardjiev Mario, Holub Josef, Macháček Jan, Hnyk Drahomír, Štíbr Bohumil, Růžičková Zdeňka, Růžička Aleš: Unique Stereocontrol in Carborane Chemistry: Skeletal Alkylcarbonation (SAC) versus Exoskeletal Alkylmethylation (EAM) Reactions. Angew Chem Int Ed 2015, 54, 4937. <https://doi.org/10.1002/anie.201500824>
  • Štíbr Bohumil: Acyl chloride carbon insertion into dicarbaborane cages – new route to tricarbollide cages. Pure and Applied Chemistry 2015, 87, 135. <https://doi.org/10.1515/pac-2014-0937>
  • Bakardjiev Mario, Štíbr Bohumil, Holub Josef, Padělková Zdeňka, Růžička Aleš: Carbon Insertion into arachno-6,9-C2B8H14 via Acyl Chlorides. Skeletal Alkylcarbonation (SAC) Reactions: A New Route for Tricarbollides. Inorg. Chem. 2013, 52, 9087. <https://doi.org/10.1021/ic401293g>
  • Mutseneck Elena V., Perekalin Dmitry S., Holub Josef, Lyssenko Konstantin A., Petrovskii Pavel V., Štíbr Bohumil, Kudinov Alexander R.: (Tetramethylcyclobutadiene)cobalt Complexes with Tricarbollide Ligands. Eur J Inorg Chem 2006, 2006, 1737. <https://doi.org/10.1002/ejic.200600051>
  • Grüner Bohumír, Štíbr Bohumil, Holub Josef, Císařová Ivana: Metal‐Promoted Cage Rearrangements in the Tricarbollide Series: Conversion of Ligand Derivatives 7‐L‐nido‐7,8,9‐C3B8H10 (L = H3N, tBuH2N, Me2HN) into Neutral 8‐R‐nido‐7,8,9‐C3B8H11 (R = H2N, tBuHN, Me2N) Compounds. Eur J Inorg Chem 2003, 2003, 1533. <https://doi.org/10.1002/ejic.200390200>
  • Shedlow Alexandra M., Kadlecek Daniel E., Clapper Jude C., Rathmill Scott E., Carroll Patrick J., Sneddon Larry G.: Syntheses, Crystallographic/Computational Characterizations, and Reactions of the First 10-Vertex arachno- and nido-Phosphamonocarbaboranes. J. Am. Chem. Soc. 2003, 125, 200. <https://doi.org/10.1021/ja020944j>
  • Kadlecek Daniel E., Sneddon Larry G.: Synthesis of the arachno-4-CB8H122- Monocarbaborane Dianion and NMR/Computational Studies of the Fluxional Processes Observed in the Isoelectronic Nine-Vertex arachno Anions:  arachno-4-CB8H122-, arachno-4-CB8H13-, and arachno-4-SB8H11-. Inorg. Chem. 2002, 41, 4239. <https://doi.org/10.1021/ic0202155>
  • Fox Mark A., Hughes Andrew K., Malget John M.: Cage-closing reactions of the nido-carborane anion 7,9-C2B9H12− and derivatives; formation of neutral 11-vertex carboranes by acidification. J. Chem. Soc., Dalton Trans. 2002, 3505. <https://doi.org/10.1039/b203920f>