Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1998, 63, 1699-1723
https://doi.org/10.1135/cccc19981699

Microwave Techniques in the Synthesis and Modification of Zeolite Catalysts. A Review

Colin S. Cundy

Centre for Microporous Materials, Department of Chemistry, UMIST, P.O. Box 88, Manchester, M60 1QD, U.K.

Crossref Cited-by Linking

  • Vasconcelos Arthur Abinader, Len Thomas, de Oliveira Alex de Nazaré, Costa Ana Alice Farias da, Souza Allan Rodrigo da Silva, Costa Carlos Emmerson Ferreira da, Luque Rafael, Rocha Filho Geraldo Narciso da, Noronha Renata Coelho Rodrigues, Nascimento Luís Adriano Santos do: Zeolites: A Theoretical and Practical Approach with Uses in (Bio)Chemical Processes. Applied Sciences 2023, 13, 1897. <https://doi.org/10.3390/app13031897>
  • Kalashnikova Galina O., Gryaznova Darya V., Baranchikov Alexander E., Britvin Sergey N., Yakovenchuk Victor N., Samburov Gleb O., Veselova Varvara O., Pulyalina Aleksandra Y., Pakhomovsky Yakov A., Bazai Ayya V., Glazunova Margarita Y., Shirokaya Anna A., Kozerozhets Irina V., Nikolaev Anatoly I., Ivanov Vladimir K.: Microwave-Assisted Synthesis of Titanosilicates Using a Precursor Produced from Titanium Ore Concentrate. ChemEngineering 2023, 7, 118. <https://doi.org/10.3390/chemengineering7060118>
  • Jin Yuxuan, Liu Ze, Han Le, Zhang Yanbo, Li Li, Zhu Siyu, Li Zhonghao Peng Jiaxing, Wang Dongmin: Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. Journal of Hazardous Materials 2022, 423, 127027. <https://doi.org/10.1016/j.jhazmat.2021.127027>
  • Amoni Bruno C., Freitas Armando D.L., Bessa Raquel A., Oliveira Cristiane P., Bastos-Neto Moisés, Azevedo Diana C.S., Lucena Sebastiao M.P., Sasaki José M., Soares Jorge B., Soares Sandra A., Loiola Adonay R.: Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics 2022, 275, 125197. <https://doi.org/10.1016/j.matchemphys.2021.125197>
  • Komissarov Leonid, Verstraelen Toon: Zeo-1, a computational data set of zeolite structures. Sci Data 2022, 9. <https://doi.org/10.1038/s41597-022-01160-5>
  • Chuhadiya Sakshi, Himanshu, Suthar D., Patel S.L., Dhaka M.S.: Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews 2021, 446, 214115. <https://doi.org/10.1016/j.ccr.2021.214115>
  • Thiquynhxuan Le, Wang Tian, Ravindra A. V., Xuxiang Yuquan, Ju Shaohua, Zhang Libo: Fast Synthesis of Submicron Zeolite Y Using Microwave Heating. Kinet Catal 2021, 62, 436. <https://doi.org/10.1134/S0023158421030046>
  • Vakhin Alexey V., Khelkhal Mohammed Amine, Tajik Arash, Gafurov Marat R., Morozov Oleg G., Nasybullin Aydar R., Karandashov Sergey A., Ponomarev Andrey A., Krapivnitskaia Tatiana O., Glyavin Mikhail Yu., Slavkina Olga V., Shchekoldin Konstantin A.: The Role of Nanodispersed Catalysts in Microwave Application during the Development of Unconventional Hydrocarbon Reserves: A Review of Potential Applications. Processes 2021, 9, 420. <https://doi.org/10.3390/pr9030420>
  • Zhang Ringxin, Raja Duaa, Zhang Yong, Yan Ying, Garforth Arthur A., Jiao Yilai, Fan Xiaolei: Sequential Microwave-Assisted Dealumination and Hydrothermal Alkaline Treatments of Y Zeolite for Preparing Hierarchical Mesoporous Zeolite Catalysts. Top Catal 2020, 63, 340. <https://doi.org/10.1007/s11244-020-01268-1>
  • Nguyen Hoang M., Sunarso Jaka, Li Claudia, Pham Gia Hung, Phan Chi, Liu Shaomin: Microwave-assisted catalytic methane reforming: A review. Applied Catalysis A: General 2020, 599, 117620. <https://doi.org/10.1016/j.apcata.2020.117620>
  • Li Liangqing, Li Jiajia, Cheng Linjuan, Wang Jiaxuan, Yang Jianhua: Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure. Journal of Membrane Science 2020, 612, 118479. <https://doi.org/10.1016/j.memsci.2020.118479>
  • Soliman Ahmad, AlAmoodi Nahla, Karanikolos Georgios N., Doumanidis Charalabos C., Polychronopoulou Kyriaki: A Review on New 3-D Printed Materials’ Geometries for Catalysis and Adsorption: Paradigms from Reforming Reactions and CO2 Capture. Nanomaterials 2020, 10, 2198. <https://doi.org/10.3390/nano10112198>
  • Pashkova Veronika, Mlekodaj Kinga, Klein Petr, Brabec Libor, Zouzelka Radek, Rathousky Jiri, Tokarova Venceslava, Dedecek Jiri: Mechanochemical Pretreatment for Efficient Solvent‐Free Synthesis of SSZ‐13 Zeolite. Chemistry A European J 2019, 25, 12068. <https://doi.org/10.1002/chem.201902107>
  • Faisal Muhammad, Larik Fayaz Ali, Saeed Aamer: A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst. J Porous Mater 2019, 26, 455. <https://doi.org/10.1007/s10934-018-0625-0>
  • Le Thiquynhxuan, Wang Qi, Pan Bo, Ravindra A.V., Ju Shaohua, Peng Jinhui: Process regulation of microwave intensified synthesis of Y-type zeolite. Microporous and Mesoporous Materials 2019, 284, 476. <https://doi.org/10.1016/j.micromeso.2019.04.029>
  • Ahmed Mohamed H.M., Muraza Oki, Miyake Koji, Hirota Yuichiro, Nishiyama Norikazu: Orchestrating fluoride effect, secondary growth and microwave irradiation in the synthesis of EU-1/ZSM-48 intergrowth crystals for the conversion of dimethyl ether to olefins. Microporous and Mesoporous Materials 2018, 267, 115. <https://doi.org/10.1016/j.micromeso.2018.02.047>
  • Hu Yunpeng, Wang Kai, Wang Tao, Luo Guangsheng: Ultrafast synthesis of TS-1 without extraframework titanium species in a continuous flow system. Microporous and Mesoporous Materials 2018, 270, 149. <https://doi.org/10.1016/j.micromeso.2018.04.043>
  • An Na, Zhao Yang, Mao Zhiyong, Agrawal Dinesh Kumar, Wang Dajian: Microwave modification of surface hydroxyl density for g-C3N4 with enhanced photocatalytic activity. Mater. Res. Express 2018, 5, 035502. <https://doi.org/10.1088/2053-1591/aab0fa>
  • Bértolo R., Silva J.M., Ribeiro M.F., Martins A., Fernandes A.: Microwave synthesis of SAPO-11 materials for long chain n -alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Applied Catalysis A: General 2017, 542, 28. <https://doi.org/10.1016/j.apcata.2017.05.010>
  • Abdullahi Tijjani, Harun Zawati, Othman Mohd Hafiz Dzarfan: A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Advanced Powder Technology 2017, 28, 1827. <https://doi.org/10.1016/j.apt.2017.04.028>
  • Ou Xiaoxia, Xu Shaojun, Warnett Jason M., Holmes Stuart M., Zaheer Amber, Garforth Arthur A., Williams Mark A., Jiao Yilai, Fan Xiaolei: Creating hierarchies promptly: Microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chemical Engineering Journal 2017, 312, 1. <https://doi.org/10.1016/j.cej.2016.11.116>
  • Castilho S., Borrego A., Henriques C., Ribeiro M.F., Fernandes A.: Monitoring cobalt ions siting in BEA and FER zeolites by in-situ UV–Vis spectroscopy: A DRS study. Inorganica Chimica Acta 2017, 455, 568. <https://doi.org/10.1016/j.ica.2016.05.047>
  • Umam Hilman Imadul, Aimon Akfiny Hasdi, Iskandar Ferry: Preliminary Study of the Effect Microwave-Heating on the Morphology and Surface Area of NaX Zeolite. MSF 2017, 895, 69. <https://doi.org/10.4028/www.scientific.net/MSF.895.69>
  • Mirzaei A., Neri G.: Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sensors and Actuators B: Chemical 2016, 237, 749. <https://doi.org/10.1016/j.snb.2016.06.114>
  • Flinčec Grgac Sandra, Katović Andrea, Katović Drago: Method of preparing stable composites of a Cu-aluminosilicate microporous compound and cellulose material and their characterisation. Cellulose 2015, 22, 1813. <https://doi.org/10.1007/s10570-015-0595-1>
  • Kubů Martin, Opanasenko Maksym, Vitvarová Dana: Desilication of SSZ-33 zeolite – Post-synthesis modification of textural and acidic properties. Catalysis Today 2015, 243, 46. <https://doi.org/10.1016/j.cattod.2014.07.046>
  • Li Jiaying, Jin Xiaotong, Duan Haoran, Ji Na, Song Chunfeng, Liu Qingling: Synthesis of NH3-SCR Catalyst SAPO-56 with Different Aluminum Sources. Procedia Engineering 2015, 121, 967. <https://doi.org/10.1016/j.proeng.2015.09.064>
  • Hu Na, Zheng Yihong, Yang Zhen, Zhou Rongfei, Chen Xiangshu: Microwave synthesis of high-flux NaY zeolite membranes in fluoride media. RSC Adv. 2015, 5, 87556. <https://doi.org/10.1039/C5RA13760H>
  • Samadi‐Maybodi Abdolraouf, Pourali S. Masoomeh: Microwave‐Assisted Hydrothermal Green Synthesis of Analcime Icositetrahedra: Insight into Intermediates Formed in the Reversed Crystal Growth Process. Eur. J. Inorg. Chem. 2014, 2014, 1204. <https://doi.org/10.1002/ejic.201301381>
  • Li Dan, Huang Jian-Feng, Cao Li-Yun, LI Jia-Yin, OuYang Hai-Bo, Yao Chun-Yan: Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceramics International 2014, 40, 2647. <https://doi.org/10.1016/j.ceramint.2013.10.061>
  • Meng Xiangju, Xiao Feng-Shou: Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521. <https://doi.org/10.1021/cr4001513>
  • Liu Zhendong, Wakihara Toru, Nishioka Daisuke, Oshima Kazunori, Takewaki Takahiko, Okubo Tatsuya: One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method. Chem. Commun. 2014, 50, 2526. <https://doi.org/10.1039/c3cc49548e>
  • Álvaro-Muñoz T., Sastre E., Márquez-Álvarez C.: Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction. Catal. Sci. Technol. 2014, 4, 4330. <https://doi.org/10.1039/C4CY00775A>
  • Lehman Sean E., Larsen Sarah C.: Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ. Sci.: Nano 2014, 1, 200. <https://doi.org/10.1039/C4EN00031E>
  • Alipour Shayan Miar, Halladj Rouein, Askari Sima: Effects of the different synthetic parameters on the crystallinity and crystal size of nanosized ZSM-5 zeolite. Reviews in Chemical Engineering 2014, 30. <https://doi.org/10.1515/revce-2014-0008>
  • Samadi-Maybodi Abdolraouf, Masoomeh Pourali S.: Microwave-assisted aging synthesis of bismuth modified zeolite-P microspheres via BiOCl nanoflake transformation. Microporous and Mesoporous Materials 2013, 167, 127. <https://doi.org/10.1016/j.micromeso.2012.02.012>
  • Wang Chaozheng, Liu Xiufeng, Li Jian, Zhang Baoquan: Microwave-assisted seeded growth of the submicrometer-thick and pure b-oriented MFI zeolite films using an ultra-dilute synthesis solution. CrystEngComm 2013, 15, 6301. <https://doi.org/10.1039/c3ce40644j>
  • Xie Zhenzhen, Zhu Minqi, Nambo Apolo, Jasinski Jacek B., Carreon Moises A.: Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates. Dalton Trans. 2013, 42, 6732. <https://doi.org/10.1039/c3dt00064h>
  • Yang Lisha, Lu Huimin: Microwave‐assisted Ionothermal Synthesis and Characterization of Zeolitic Imidazolate Framework‐8. Chin. J. Chem. 2012, 30, 1040. <https://doi.org/10.1002/cjoc.201100595>
  • Zendehdel M., Cruciani G., Dondi M.: Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. J Porous Mater 2012, 19, 361. <https://doi.org/10.1007/s10934-011-9482-9>
  • Dargahi Mahdi, Kazemian Hossein, Soltanieh Mohammad, Hosseinpour Morteza, Rohani Sohrab: High temperature synthesis of SAPO-34: Applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters. Powder Technology 2012, 217, 223. <https://doi.org/10.1016/j.powtec.2011.10.030>
  • Simões A. N., Neiva L. S., Simões V. N., Rodrigues M. G., Gama L.: Influência da temperatura na síntese hidrotérmica da zeólita Y obtida por microondas. Cerâmica 2012, 58, 444. <https://doi.org/10.1590/S0366-69132012000400004>
  • Bachari K., Guerroudj R. M., Lamouchi M.: Structural characterization and catalytic properties of gallium-modified folded sheet mesoporous materials prepared using microwave-hydrothermal process. Reac Kinet Mech Cat 2011, 102, 219. <https://doi.org/10.1007/s11144-010-0255-2>
  • Lazau C., Ratiu C., Orha C., Pode R., Manea F.: Photocatalytic activity of undoped and Ag-doped TiO2-supported zeolite for humic acid degradation and mineralization. Materials Research Bulletin 2011, 46, 1916. <https://doi.org/10.1016/j.materresbull.2011.07.026>
  • Hajipour Abdol R., Karami Kazem, Tavakoli Ghazal: Heck coupling reaction using monomeric ortho‐palladated complex of 4‐methoxy‐ benzoylmethylenetriphenylphosphorane under microwave irradiation. Applied Organom Chemis 2010, 24, 798. <https://doi.org/10.1002/aoc.1705>
  • Harris A. T., Maddocks A. R., Braham R. J.: Correlating the surface area and synthesis conditions of block co‐polymer templated mesoporous silica. Asia-Pacific J Chem Eng 2010, 5, 527. <https://doi.org/10.1002/apj.360>
  • Bachari K., Guerroudj R. M., Lamouchi M.: Catalytic performance of iron-mesoporous nanomaterials synthesized by a microwave-hydrothermal process. Reac Kinet Mech Cat 2010. <https://doi.org/10.1007/s11144-010-0175-1>
  • Jin Hailian, Prasetyanto Eko Adi, Jiang Nanzhe, Oh Soon-Moon, Park Sang-Eon: Length dependency of hydrocarbon adsorption on nanostacked MFI zeolite by tracer chromatography. Applied Surface Science 2010, 256, 5508. <https://doi.org/10.1016/j.apsusc.2009.12.125>
  • Chen Xiaoxin, Yan Wenfu, Cao Xuejing, Xu Ruren: Quantitative correlation between morphology of silicalite-1 crystals and dielectric constants of solvents. Microporous and Mesoporous Materials 2010, 131, 45. <https://doi.org/10.1016/j.micromeso.2009.11.039>
  • Bilecka Idalia, Niederberger Markus: Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358. <https://doi.org/10.1039/b9nr00377k>
  • Kustov L. M., Sinev I. M.: Microwave activation of catalysts and catalytic processes. Russ. J. Phys. Chem. 2010, 84, 1676. <https://doi.org/10.1134/S0036024410100055>
  • Guo Yajie, Wang Guangjian, Wang Yuran, Li Zhengwang, Liu Guangqing, Liu Yiwu: Microwave Hydrothermal Synthesis of Bimetallic (Ti-V) Ions Modified MCM-41 for Epoxidation of Styrene. MRS Proc. 2010, 1279. <https://doi.org/10.1557/PROC-1279-26>
  • Liu Yan, Wang Yun, Zhang Xiao Jie, Xie Ji Min, Yan Yong Sheng: Synthesis of SBA-15 under Normal Pressure by Microwave Irradiation Method for Adsorption of Pb(II) in Environment. AMR 2010, 113-116, 775. <https://doi.org/10.4028/www.scientific.net/AMR.113-116.775>
  • Zhang Yi, Zhong Shengliang, Zhang Maisheng, Lin Yongcheng: Antibacterial activity of silver-loaded zeolite A prepared by a fast microwave-loading method. J Mater Sci 2009, 44, 457. <https://doi.org/10.1007/s10853-008-3129-5>
  • Bachari K., Touileb A., Lamouchi M.: Characterization of iron-mesoporous molecular sieves obtained by a microwave-hydrothermal process. Transition Met Chem 2009, 34, 529. <https://doi.org/10.1007/s11243-009-9226-8>
  • Zhu Guangqi, Li Yanshuo, Zhou Han, Liu Jie, Yang Weishen: Microwave synthesis of high performance FAU-type zeolite membranes: Optimization, characterization and pervaporation dehydration of alcohols. Journal of Membrane Science 2009, 337, 47. <https://doi.org/10.1016/j.memsci.2009.03.026>
  • Chen Xiaoxin, Yan Wenfu, Cao Xuejing, Yu Jihong, Xu Ruren: Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials 2009, 119, 217. <https://doi.org/10.1016/j.micromeso.2008.10.015>
  • Hu Yuanyuan, Liu Chong, Zhang Yahong, Ren Nan, Tang Yi: Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Microporous and Mesoporous Materials 2009, 119, 306. <https://doi.org/10.1016/j.micromeso.2008.11.005>
  • Gharibeh Murad, Tompsett Geoffrey, Lu Fan, Auerbach Scott M., Yngvesson K. Sigfrid, Conner W. C.: Temperature Distributions within Zeolite Precursor Solutions in the Presence of Microwaves. J. Phys. Chem. B 2009, 113, 12506. <https://doi.org/10.1021/jp900394u>
  • Gharibeh Murad, Tompsett Geoffrey A., Yngvesson K. Sigfrid, Conner W. Curtis: Microwave Synthesis of Zeolites: Effect of Power Delivery. J. Phys. Chem. B 2009, 113, 8930. <https://doi.org/10.1021/jp900400d>
  • Abelló Sònia, Pérez-Ramírez Javier: Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. Phys. Chem. Chem. Phys. 2009, 11, 2959. <https://doi.org/10.1039/b819543a>
  • Venna Surendar R., Carreon Moises A.: Microwave assisted phase transformation of silicoaluminophosphate zeolite crystals. J. Mater. Chem. 2009, 19, 3138. <https://doi.org/10.1039/b903316e>
  • Rebrov E. V.: Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catal. Ind. 2009, 1, 322. <https://doi.org/10.1134/S2070050409040096>
  • Newalkar Bharat L., Chiranjeevi T., Choudary N. V., Komarneni S.: Microwave-hydrothermal synthesis and characterization of Co-VSB-5 microporous framework. J Porous Mater 2008, 15, 271. <https://doi.org/10.1007/s10934-006-9081-3>
  • Gharibeh M., Tompsett G. A., Conner W. C.: Microwave Reaction Enhancement: The Rapid Synthesis of SAPO-11 Molecular Sieves. Top Catal 2008, 49, 157. <https://doi.org/10.1007/s11244-008-9089-9>
  • Demel Jan, Park Sang-Eon, Čejka Jiří, Štěpnička Petr: The use of palladium nanoparticles supported with MCM-41 and basic (Al)MCM-41 mesoporous sieves in microwave-assisted Heck reaction. Catalysis Today 2008, 132, 63. <https://doi.org/10.1016/j.cattod.2007.12.007>
  • Adnađević Borivoj, Gigov Mihajlo, Sindjic Milena, Jovanović Jelena: Comparative study on isothermal kinetics of fullerol formation under conventional and microwave heating. Chemical Engineering Journal 2008, 140, 570. <https://doi.org/10.1016/j.cej.2007.12.011>
  • Park Sang-Eon, Choi Kwang-Min: Green catalysis by microwave synthesized nanostructured materials. Journal of Physics and Chemistry of Solids 2008, 69, 1501. <https://doi.org/10.1016/j.jpcs.2007.10.119>
  • Jiang Tingshun, Shen Wei, Zhao Qian, Li Mei, Chu Jinyu, Yin Hengbo: Characterization of CoMCM-41 mesoporous molecular sieves obtained by the microwave irradiation method. Journal of Solid State Chemistry 2008, 181, 2298. <https://doi.org/10.1016/j.jssc.2008.05.010>
  • Zhu Guangqi, Li Yanshuo, Zhou Han, Liu Jie, Yang Weishen: FAU-type zeolite membranes synthesized by microwave assisted in situ crystallization. Materials Letters 2008, 62, 4357. <https://doi.org/10.1016/j.matlet.2008.07.026>
  • Li Yanshuo, Yang Weishen: Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science 2008, 316, 3. <https://doi.org/10.1016/j.memsci.2007.08.054>
  • Chandrasekhar Sathy, Pramada P.N.: Microwave assisted synthesis of zeolite A from metakaolin. Microporous and Mesoporous Materials 2008, 108, 152. <https://doi.org/10.1016/j.micromeso.2007.04.003>
  • Zubowa Heide-Lore, Kosslick Hendrik, Müller Dirk, Richter Manfred, Wilde Lutz, Fricke Rolf: Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous and Mesoporous Materials 2008, 109, 542. <https://doi.org/10.1016/j.micromeso.2007.06.002>
  • Pai S.M., Newalkar B.L., Choudary N.V.: Microwave-hydrothermal synthesis and characterization of silico-aluminophosphate molecular sieve: SSZ-51. Microporous and Mesoporous Materials 2008, 112, 357. <https://doi.org/10.1016/j.micromeso.2007.10.010>
  • Youssef H., Ibrahim D., Komarneni S.: Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite. Microporous and Mesoporous Materials 2008, 115, 527. <https://doi.org/10.1016/j.micromeso.2008.02.030>
  • Caro Juergen, Noack Manfred: Zeolite membranes – Recent developments and progress. Microporous and Mesoporous Materials 2008, 115, 215. <https://doi.org/10.1016/j.micromeso.2008.03.008>
  • Ma Huaijun, Tian Zhijian, Xu Renshun, Wang Bingchun, Wei Ying, Wang Lei, Xu Yunpeng, Zhang Weiping, Lin Liwu: Effect of Water on the Ionothermal Synthesis of Molecular Sieves. J. Am. Chem. Soc. 2008, 130, 8120. <https://doi.org/10.1021/ja802207p>
  • Conner Wm. Curtis, Tompsett Geoffrey A.: How Could and Do Microwaves Influence Chemistry at Interfaces?. J. Phys. Chem. B 2008, 112, 2110. <https://doi.org/10.1021/jp0775247>
  • Panzarella Bernard, Tompsett Geoffrey, Conner William C., Jones Keith: In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites. ChemPhysChem 2007, 8, 357. <https://doi.org/10.1002/cphc.200600496>
  • Nirmala Grace A., Pandian K.: One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol—A comparative study. Materials Chemistry and Physics 2007, 104, 191. <https://doi.org/10.1016/j.matchemphys.2007.03.009>
  • Laha S.C., Gläser R.: Characterization and catalytic performance of [Cr]MCM-41 and [Cr]MCM-48 prepared by either classical or microwave heating. Microporous and Mesoporous Materials 2007, 99, 159. <https://doi.org/10.1016/j.micromeso.2006.08.034>
  • Romero M.D., Ovejero G., Uguina M.A., Rodrı´guez A., Gómez J.M.: Fast tailoring of the acid–base properties in the NaX zeolite by cesium-exchange under microwave heating. Microporous and Mesoporous Materials 2007, 98, 317. <https://doi.org/10.1016/j.micromeso.2006.09.024>
  • Chen Xiaoxin, Yan Wenfu, Shen Wanling, Yu Jihong, Cao Xuejing, Xu Ruren: Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials 2007, 104, 296. <https://doi.org/10.1016/j.micromeso.2007.05.015>
  • Silverwood Ian, McDougall Gordon, Whittaker Gavin: Comparison of conventional versus microwave heating of the platinum catalysed oxidation of carbon monoxide over EUROPT-1 in a novel infrared microreactor cell. Journal of Molecular Catalysis A: Chemical 2007, 269, 1. <https://doi.org/10.1016/j.molcata.2006.12.035>
  • Bond G., Gardner J.A., McCabe R.W., Shorrock D.J.: Friedel-Crafts acylation reactions using heterogeneous catalysts stimulated by conventional and microwave heating. Journal of Molecular Catalysis A: Chemical 2007, 278, 1. <https://doi.org/10.1016/j.molcata.2007.07.048>
  • Panzarella Bernard, Tompsett Geoffrey A., Yngvesson K. Sigfrid, Conner W. Curtis: Microwave Synthesis of Zeolites. 2. Effect of Vessel Size, Precursor Volume, and Irradiation Method. J. Phys. Chem. B 2007, 111, 12657. <https://doi.org/10.1021/jp072622d>
  • Combariza A. F., Sullivan E., Auerbach S. M.: Simulating non-equilibrium dynamics of molecules confined in zeolite nanopores: Effects of implicit and explicit thermostats on microwave heated fluids. Eur. Phys. J. Spec. Top. 2007, 141, 93. <https://doi.org/10.1140/epjst/e2007-00023-1>
  • Lee Gun Dae, Kim Sung Gab, Jeong Hee Hoon, Park Seong Soo, Hong Seong Soo: Photocatalytic Hydroxylation of Phenol over Ti-Containing Zeolites (TS-1, Ti-MCM-41). SSP 2007, 124-126, 1793. <https://doi.org/10.4028/www.scientific.net/SSP.124-126.1793>
  • Xu Yun‐Peng, Tian Zhi‐Jian, Wang Shao‐Jun, Hu Yue, Wang Lei, Wang Bing‐Chun, Ma Ying‐Chong, Hou Lei, Yu Jia‐You, Lin Li‐Wu: Microwave‐Enhanced Ionothermal Synthesis of Aluminophosphate Molecular Sieves. Angewandte Chemie 2006, 118, 4069. <https://doi.org/10.1002/ange.200600054>
  • Xu Yun‐Peng, Tian Zhi‐Jian, Wang Shao‐Jun, Hu Yue, Wang Lei, Wang Bing‐Chun, Ma Ying‐Chong, Hou Lei, Yu Jia‐You, Lin Li‐Wu: Microwave‐Enhanced Ionothermal Synthesis of Aluminophosphate Molecular Sieves. Angew Chem Int Ed 2006, 45, 3965. <https://doi.org/10.1002/anie.200600054>
  • Jhung Sung Hwa, Lee Jin‐Ho, Forster Paul M., Férey Gérard, Cheetham Anthony K., Chang Jong‐San: Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase‐Selective and Rapid Crystallization. Chemistry A European J 2006, 12, 7899. <https://doi.org/10.1002/chem.200600270>
  • Tompsett Geoffrey A., Conner William Curtis, Yngvesson K. Sigfrid: Microwave Synthesis of Nanoporous Materials. ChemPhysChem 2006, 7, 296. <https://doi.org/10.1002/cphc.200500449>
  • Zhang Xunli, Hayward David O.: Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chimica Acta 2006, 359, 3421. <https://doi.org/10.1016/j.ica.2006.01.037>
  • Laha S.C., Kamalakar G., Gläser R.: Microwave-assisted synthesis of [Cr]APO-5. Microporous and Mesoporous Materials 2006, 90, 45. <https://doi.org/10.1016/j.micromeso.2005.09.008>
  • Pai S., Newalkar B.L., Choudary N.V.: Synthesis and characterization of cobalt substituted aluminophosphate molecular sieve: Co-SSZ-51 under microwave-hydrothermal conditions. Microporous and Mesoporous Materials 2006, 96, 135. <https://doi.org/10.1016/j.micromeso.2006.06.027>
  • Logar Nataša Zabukovec, Tušar Nataša Novak, Mali Gregor, Mazaj Matjaž, Arčon Iztok, Arčon Denis, Rečnik Aleksander, Ristić Alenka, Kaučič Venčeslav: Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: Synthesis and characterization. Microporous and Mesoporous Materials 2006, 96, 386. <https://doi.org/10.1016/j.micromeso.2006.07.004>
  • Lin Zhuojia, Wragg David S., Morris Russell E.: Microwave-assisted synthesis of anionic metal–organic frameworks under ionothermal conditions. Chem. Commun. 2006, 2021. <https://doi.org/10.1039/B600814C>
  • Silverwood Ian P., McDougall Gordon S., Gavin Whittaker A.: A microwave-heated infrared reaction cell for the in situ study of heterogeneous catalysts. Phys. Chem. Chem. Phys. 2006, 8, 5412. <https://doi.org/10.1039/b610832f>
  • Syntheses of FAPO-5 Molecular Sieves with Microwave Irradiation and Their Characterization. Journal of the Korean Chemical Society 2006, 50, 53. <https://doi.org/10.5012/jkcs.2006.50.1.053>
  • Hwang Young Kyu, Chang Jong‐San, Park Sang‐Eon, Kim Dae Sung, Kwon Young‐Uk, Jhung Sung Hwa, Hwang Jin‐Soo, Park Min Seok: Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angewandte Chemie 2005, 117, 562. <https://doi.org/10.1002/ange.200461403>
  • Hwang Young Kyu, Chang Jong‐San, Park Sang‐Eon, Kim Dae Sung, Kwon Young‐Uk, Jhung Sung Hwa, Hwang Jin‐Soo, Park Min Seok: Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angew Chem Int Ed 2005, 44, 556. <https://doi.org/10.1002/anie.200461403>
  • Zendehdel M., Kooti M., Amini M. M.: Dispersion and Solid State Ion Exchange of VCl3, CrCl3⋅6H2O, MnCl2⋅4H2O and CoCl2⋅6H2O onto the Surface of NaY Zeolite Using Microwave Irradiation. J Porous Mater 2005, 12, 143. <https://doi.org/10.1007/s10934-005-6771-1>
  • Toukoniitty B., Mikkola J.-P., Murzin D.Yu., Salmi T.: Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions. Applied Catalysis A: General 2005, 279, 1. <https://doi.org/10.1016/j.apcata.2004.10.044>
  • Do Yoon-Jeong, Kim Jin-Ho, Park Jin-Hwan, Park Seong-Soo, Hong Seong-Soo, Suh Cha-Soo, Lee Gun-Dae: Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41. Catalysis Today 2005, 101, 299. <https://doi.org/10.1016/j.cattod.2005.03.009>
  • Wang Shaobin, Boyjoo Y., Choueib A.: A comparative study of dye removal using fly ash treated by different methods. Chemosphere 2005, 60, 1401. <https://doi.org/10.1016/j.chemosphere.2005.01.091>
  • Bandyopadhyay M., Gies H.: Synthesis of MCM-48 by microwave-hydrothermal process. Comptes Rendus. Chimie 2005, 8, 621. <https://doi.org/10.1016/j.crci.2005.01.009>
  • Jhung Sung Hwa, Lee Jin-Ho, Yoon Ji Woong, Hwang Jin-Soo, Park Sang-Eon, Chang Jong-San: Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition. Microporous and Mesoporous Materials 2005, 80, 147. <https://doi.org/10.1016/j.micromeso.2004.11.013>
  • Motuzas J., Julbe A., Noble R.D., Guizard C., Beresnevicius Z.J., Cot D.: Rapid synthesis of silicalite-1 seeds by microwave assisted hydrothermal treatment. Microporous and Mesoporous Materials 2005, 80, 73. <https://doi.org/10.1016/j.micromeso.2004.12.002>
  • Cundy Colin S., Cox Paul A.: The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials 2005, 82, 1. <https://doi.org/10.1016/j.micromeso.2005.02.016>
  • Roberts Brett A., Strauss Christopher R.: Toward Rapid, “Green”, Predictable Microwave-Assisted Synthesis. Acc. Chem. Res. 2005, 38, 653. <https://doi.org/10.1021/ar040278m>
  • Whittaker A. G.: Diffusion in Microwave-Heated Ceramics. Chem. Mater. 2005, 17, 3426. <https://doi.org/10.1021/cm050351i>
  • Combariza Aldo F., Sullivan Ethan, Auerbach Scott M., Blanco Cristian: Simulating the Relaxation Dynamics of Microwave-Driven Zeolites. J. Phys. Chem. B 2005, 109, 18439. <https://doi.org/10.1021/jp0524680>
  • Hwang Young Kyu, Lee U-Hwang, Chang Jong-San, Kwon Young-Uk, Park Sang-Eon: Microwave-induced Fabrication of MFI Zeolite Crystal Films onto Various Metal Oxide Substrates. Chem Lett 2005, 34, 1596. <https://doi.org/10.1246/cl.2005.1596>
  • Ali Zaidi Syed Sameen, Rohani Sohrab: PROGRESS TOWARDS A DRY PROCESS FOR THE SYNTHESIS OF ZEOLITE – A REVIEW. Reviews in Chemical Engineering 2005, 21. <https://doi.org/10.1515/REVCE.2005.21.5.265>
  • Selective Crystallization of SAPO-5 and SAPO-34 Molecular Sieves in Alkaline Condition: Effect of Heating Method. Bulletin of the Korean Chemical Society 2005, 26, 558. <https://doi.org/10.5012/bkcs.2005.26.4.558>
  • Will Heiko, Scholz Peter, Ondruschka Bernd: Microwave‐Assisted Heterogeneous Gas‐Phase Catalysis. Chem Eng & Technol 2004, 27, 113. <https://doi.org/10.1002/ceat.200401865>
  • Romero M.D., Ovejero G., Uguina M.A., Rodrı&#x;guez A., Gómez J.M.: Fast removal of the acid properties in the NaX zeolite by ion-exchange under microwave heating. Catalysis Communications 2004, 5, 157. <https://doi.org/10.1016/j.catcom.2003.12.010>
  • Sathupunya Mathavee, Gulari Erdogan, Wongkasemjit Sujitra: Microwave preparation of Li-zeolite directly from alumatrane and silatrane. Materials Chemistry and Physics 2004, 83, 89. <https://doi.org/10.1016/j.matchemphys.2003.09.023>
  • Romero M.D., Gómez J.M., Ovejero G., Rodrı́guez A.: Synthesis of LSX zeolite by microwave heating. Materials Research Bulletin 2004, 39, 389. <https://doi.org/10.1016/j.materresbull.2003.10.018>
  • Jhung Sung Hwa, Hwang Young Kyu, Chang Jong-San, Park Sang-Eon: Effect of acidity and anions on synthesis of AFI molecular sieves in wide pH range of 3–10. Microporous and Mesoporous Materials 2004, 67, 151. <https://doi.org/10.1016/j.micromeso.2003.10.012>
  • Kim Dae Sung, Chang Jong-San, Hwang Jin-Soo, Park Sang-Eon, Kim Ji Man: Synthesis of zeolite beta in fluoride media under microwave irradiation. Microporous and Mesoporous Materials 2004, 68, 77. <https://doi.org/10.1016/j.micromeso.2003.11.017>
  • Valtchev Valentin P, Faust Anne-Cathrine, Lézervant Jérôme: Rapid synthesis of silicalite-1 nanocrystals by conventional heating. Microporous and Mesoporous Materials 2004, 68, 91. <https://doi.org/10.1016/j.micromeso.2003.11.018>
  • Hwang Young Kyu, Chang Jong-San, Kwon Young-Uk, Park Sang-Eon: Microwave synthesis of cubic mesoporous silica SBA-16. Microporous and Mesoporous Materials 2004, 68, 21. <https://doi.org/10.1016/j.micromeso.2003.12.004>
  • Sathupunya Mathavee, Gulari Erdogan, Jamieson Alexander, Wongkasemjit Sujitra: Microwave-assisted preparation of zeolite K–H from alumatrane and silatrane. Microporous and Mesoporous Materials 2004, 69, 157. <https://doi.org/10.1016/j.micromeso.2004.02.003>
  • Jhung Sung Hwa, Chang Jong-San, Kim Dae Sung, Park Sang-Eon: Effects of silica on the synthesis of AFI molecular sieve in acid and base conditions under microwave irradiation. Microporous and Mesoporous Materials 2004, 71, 135. <https://doi.org/10.1016/j.micromeso.2004.03.026>
  • Newalkar Bharat L., Katsuki Hiroaki, Komarneni Sridhar: Microwave-hydrothermal synthesis and characterization of microporous–mesoporous disordered silica using mixed-micellar-templating approach. Microporous and Mesoporous Materials 2004, 73, 161. <https://doi.org/10.1016/j.micromeso.2004.05.002>
  • Xu Xiaochun, Bao Yun, Song Chunshan, Yang Weishen, Liu Jie, Lin Liwu: Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous and Mesoporous Materials 2004, 75, 173. <https://doi.org/10.1016/j.micromeso.2004.07.019>
  • Conner Wm. Curtis, Tompsett Geoffrey, Lee Kyo-Ho, Yngvesson K. Sigfrid: Microwave Synthesis of Zeolites:  1. Reactor Engineering. J. Phys. Chem. B 2004, 108, 13913. <https://doi.org/10.1021/jp037358c>
  • Cundy Colin S, Forrest James O, Plaisted Richard J: Some observations on the preparation and properties of colloidal silicalites. Part I: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1). Microporous and Mesoporous Materials 2003, 66, 143. <https://doi.org/10.1016/j.micromeso.2003.08.021>
  • He Rong, Qian Xuefeng, Yin Jie, Zhu Zikang: Preparation of Bi2S3 nanowhiskers and their morphologies. Journal of Crystal Growth 2003, 252, 505. <https://doi.org/10.1016/S0022-0248(03)00968-0>
  • Phiriyawirut Phairat, Magaraphan Rathanawan, Jamieson Alexander M, Wongkasemjit Sujitra: MFI zeolite synthesis directly from silatrane via sol–gel process and microwave technique. Materials Science and Engineering: A 2003, 361, 147. <https://doi.org/10.1016/S0921-5093(03)00509-4>
  • Julbe A, Motuzas J, Cazevielle F, Volle G, Guizard C: Synthesis of sodalite/αAl2O3 composite membranes by microwave heating. Separation and Purification Technology 2003, 32, 139. <https://doi.org/10.1016/S1383-5866(03)00027-3>
  • Gies H., Grabowski S., Bandyopadhyay M., Grünert W., Tkachenko O.P., Klementiev K.V., Birkner A.: Synthesis and characterization of silica MCM-48 as carrier of size-confined nanocrystalline metal oxides particles inside the pore system. Microporous and Mesoporous Materials 2003, 60, 31. <https://doi.org/10.1016/S1387-1811(03)00313-5>
  • Jhung Sung Hwa, Chang Jong-San, Hwang Jin Soo, Park Sang-Eon: Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials 2003, 64, 33. <https://doi.org/10.1016/S1387-1811(03)00501-8>
  • Cundy Colin S., Cox Paul A.: The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663. <https://doi.org/10.1021/cr020060i>
  • Blanco Cristian, Auerbach Scott M.: Nonequilibrium Molecular Dynamics of Microwave-Driven Zeolite−Guest Systems:  Loading Dependence of Athermal Effects. J. Phys. Chem. B 2003, 107, 2490. <https://doi.org/10.1021/jp026959l>
  • Will H., Scholz P., Ondruschka B.: Heterogene Gasphasenkatalyse im Mikrowellenfeld. Chem -Ing -Tech 2002, 74, 1057. <https://doi.org/10.1002/1522-2640(20020815)74:8<1057::AID-CITE1057>3.0.CO;2-3>
  • Will H., Scholz P., Ondruschka B.: Heterogene Gasphasenkatalyse im Mikrowellenfeld. Chemie Ingenieur Technik 2002, 74, 1057. <https://doi.org/10.1002/1522-2640(20020815)74:8<1057::AID-CITE1057>3.0.CO;2-3>
  • Sathupunya Mathavee, Gulari Erdogan, Wongkasemjit Sujitra: ANA and GIS zeolite synthesis directly from alumatrane and silatrane by sol-gel process and microwave technique. Journal of the European Ceramic Society 2002, 22, 2305. <https://doi.org/10.1016/S0955-2219(02)00042-0>
  • Kunii Katsuyuki, Narahara Kazuhiro, Yamanaka Shoji: Template-free synthesis of AlPO4-H1, -H2, and -H3 by microwave heating. Microporous and Mesoporous Materials 2002, 52, 159. <https://doi.org/10.1016/S1387-1811(02)00314-1>
  • Kunii Katsuyuki, Narahara Kazuhiro, Yamanaka Shoji: Template-Free Synthesis of AlPO 4 -H1 by Microwave Heating. Phosphorus, Sulfur, and Silicon and the Related Elements 2002, 177, 1437. <https://doi.org/10.1080/10426500212287>
  • Gümgüm Bahattin, Bırıcık Nermin, Baysal Akın: Microwave Irradiation Technique for Synthesis of Dialkyl Dithiophosphoric Acids. Phosphorus, Sulfur, and Silicon and the Related Elements 2002, 177, 2507. <https://doi.org/10.1080/10426500214305>
  • Stout Stephen A., Komarneni Sridhar: A Microwave-Assisted Method for the Rapid Removal of K From Phlogopite. Clays and clay miner. 2002, 50, 248. <https://doi.org/10.1346/000986002760832847>
  • Newalkar Bharat L, Komarneni Sridhar, Katsuki Hiroaki: Microwave-hydrothermal synthesis and characterization of barium titanate powders. Materials Research Bulletin 2001, 36, 2347. <https://doi.org/10.1016/S0025-5408(01)00729-2>
  • Larhed Mats, Hallberg Anders: Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discovery Today 2001, 6, 406. <https://doi.org/10.1016/S1359-6446(01)01735-4>
  • Xu Xiaochun, Yang Weishen, Liu Jie, Lin Liwu: Synthesis of NaA zeolite membrane by microwave heating. Separation and Purification Technology 2001, 25, 241. <https://doi.org/10.1016/S1383-5866(01)00108-3>
  • Newalkar Bharat L., Olanrewaju Johnson, Komarneni Sridhar: Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave−Hydrothermal Conditions. Chem. Mater. 2001, 13, 552. <https://doi.org/10.1021/cm000748g>
  • Newalkar Bharat L., Komarneni Sridhar: Control over Microporosity of Ordered Microporous−Mesoporous Silica SBA-15 Framework under Microwave-Hydrothermal Conditions:  Effect of Salt Addition. Chem. Mater. 2001, 13, 4573. <https://doi.org/10.1021/cm0103038>
  • Newalkar Bharat L., Olanrewaju Johnson, Komarneni Sridhar: Microwave-Hydrothermal Synthesis and Characterization of Zirconium Substituted SBA-15 Mesoporous Silica. J. Phys. Chem. B 2001, 105, 8356. <https://doi.org/10.1021/jp010889l>
  • Vallin Karl S. A., Larhed Mats, Johansson Katarina, Hallberg Anders: Highly Selective Palladium-Catalyzed Synthesis of Protected α,β-Unsaturated Methyl Ketones and 2-Alkoxy-1,3-butadienes. High-Speed Chemistry by Microwave Flash Heating. J. Org. Chem. 2000, 65, 4537. <https://doi.org/10.1021/jo000070o>
  • Alterman Mathias, Hallberg Anders: Fast Microwave-Assisted Preparation of Aryl and Vinyl Nitriles and the Corresponding Tetrazoles from Organo-halides. J. Org. Chem. 2000, 65, 7984. <https://doi.org/10.1021/jo0009954>
  • Gümgüm Bahattin, Biricik Nermin, Baysal Akin: Microwave Irradiation Technique for the Synthesis of Dialkyl Dithiophoshoric Acids. Phosphorus, Sulfur, and Silicon and the Related Elements 2000, 167, 111. <https://doi.org/10.1080/10426500008082392>