Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1995, 60, 85-94
https://doi.org/10.1135/cccc19950085

Phenomenon of Turbulent Macro-Instabilities in Agitated Systems

Oldřich Brůhaa, Ivan Fořtb and Pavel Smolkaa

a Department of Physics, Faculty of Mechanical Engineering, Czech Technical University, 166 07 Prague 6, Czech Republic
b Department of Chemical and Food Process Equipment Design, Faculty of Mechanical Engineering, Czech Technical University, 166 07 Prague 6, Czech Republic

Crossref Cited-by Linking

  • Mikhaylov Kirill, Rigopoulos Stelios, Papadakis George: Three-dimensional characterisation of macro-instabilities in a turbulent stirred tank flow and reconstruction from sparse measurements using machine learning methods. Chemical Engineering Research and Design 2023, 196, 276. <https://doi.org/10.1016/j.cherd.2023.06.044>
  • Brůha Tomáš, Procházka Pavel, Uruba Václav: Investigation of Low-Frequency Phenomena within Flow Pattern in Standard Mixing Vessel Induced by Pitched Blade Impeller. Processes 2021, 9, 545. <https://doi.org/10.3390/pr9030545>
  • Davoody Meysam, Lane Graeme, Graham Lachlan J. W., Wu Jie, Madapusi Srinivasan, Parthasarathy Rajarathinam: Scale formation on the wall of a mechanically stirred vessel—experimental assessment and interpretation using computational fluid dynamics. AIChE Journal 2018, 64, 3912. <https://doi.org/10.1002/aic.16358>
  • Brůha T., Smolka P., Jahoda M., Fořt I.: Dynamics of flow macro-formation and its interference with liquid surface in mixing vessel with pitched blade impeller. Chemical Engineering Research and Design 2011, 89, 2279. <https://doi.org/10.1016/j.cherd.2011.04.019>
  • Nurtono T., Setyawan H., Altway A., Winardi S.: Macro-instability characteristic in agitated tank based on flow visualization experiment and large eddy simulation. Chemical Engineering Research and Design 2009, 87, 923. <https://doi.org/10.1016/j.cherd.2009.01.011>
  • Takeda Hiroshi, Tada Yutaka, Hiraoka Setsuro: Low-Frequency Fluctuations in Agitated Vessels. J. Chem. Eng. Japan 2009, 42, 847. <https://doi.org/10.1252/jcej.08we305>
  • Paglianti A., Montante G., Magelli F.: Novel experiments and a mechanistic model for macroinstabilities in stirred tanks. AIChE Journal 2006, 52, 426. <https://doi.org/10.1002/aic.10634>
  • Cerbelli S., Giona M., Paglianti A., Pintus S.: Intermittency and fine structure of velocity fluctuations arising in flow-pattern transitions in stirred tanks. Chemical Engineering Science 2005, 60, 4736. <https://doi.org/10.1016/j.ces.2005.03.032>
  • Galletti C., Paglianti A., Lee K. C., Yianneskis M.: Flow Instabilities Associated With Impeller Clearance Changes In Stirred Vessels. Chemical Engineering Communications 2005, 192, 516. <https://doi.org/10.1080/00986440590477953>
  • Galletti C., Paglianti A., Lee K. C., Yianneskis M.: Reynolds number and impeller diameter effects on instabilities in stirred vessels. AIChE Journal 2004, 50, 2050. <https://doi.org/10.1002/aic.10236>
  • Roussinova V. T., Kresta S. M., Weetman R.: Resonant geometries for circulation pattern macroinstabilities in a stirred tank. AIChE Journal 2004, 50, 2986. <https://doi.org/10.1002/aic.10275>
  • Kresta Suzanne M, Roussinova V.T: Comments to “on the origin, frequency and magnitude of macro-instabilities of the flows in stirred vessels” by Nikiforaki et al. Chemical Engineering Science 2004, 59, 951. <https://doi.org/10.1016/j.ces.2003.12.006>
  • Matsuda Nobuo, Tada Yutaka, Hiraoka Setsuro, Qian Shaoxiang, Takeda Hiroshi: The Effect of Off-bottom Clearance on Macro Instabilities in a Stirred Vessel. J. Chem. Eng. Japan / JCEJ 2004, 37, 1215. <https://doi.org/10.1252/jcej.37.1215>
  • Roussinova Vesselina, Kresta Suzanne M., Weetman Ron: Low frequency macroinstabilities in a stirred tank: scale-up and prediction based on large eddy simulations. Chemical Engineering Science 2003, 58, 2297. <https://doi.org/10.1016/S0009-2509(03)00097-6>
  • Nikiforaki L, Montante G, Lee K.C, Yianneskis M: On the origin, frequency and magnitude of macro-instabilities of the flows in stirred vessels. Chemical Engineering Science 2003, 58, 2937. <https://doi.org/10.1016/S0009-2509(03)00152-0>
  • Galletti C., Brunazzi E., Yianneskis M., Paglianti A.: Spectral and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel. Chemical Engineering Science 2003, 58, 3859. <https://doi.org/10.1016/S0009-2509(03)00230-6>
  • Bittorf K.J., Kresta S.M.: Prediction of Cloud Height for Solid Suspensions in Stirred Tanks. Chemical Engineering Research and Design 2003, 81, 568. <https://doi.org/10.1205/026387603765444519>
  • Bittorf Kevin J., Kresta Suzanne M.: Three‐dimensional wall jets: Axial flow in a stirred tank. AIChE Journal 2001, 47, 1277. <https://doi.org/10.1002/aic.690470605>
  • Bittorf Kevin J., Kresta Suzanne M.: Active volume of mean circulation for stirred tanks agitated with axial impellers. Chemical Engineering Science 2000, 55, 1325. <https://doi.org/10.1016/S0009-2509(99)00403-0>
  • Roussinova V.T., Grgic B., Kresta S.M.: Study of Macro-Instabilities in Stirred Tanks Using a Velocity Decomposition Technique. Chemical Engineering Research and Design 2000, 78, 1040. <https://doi.org/10.1205/026387600528157>
  • Pettersson Michael, Rasmuson Åke C.: Hydrodynamics of suspensions agitated by pitched‐blade turbine. AIChE Journal 1998, 44, 513. <https://doi.org/10.1002/aic.690440303>
  • Fořt Ivan: Comments of the article “the mean flow field generated by a Pitched Blade Turbine: Changes in the circulation pattern due to impeller geometry” by De‐Ming Mao, Lian‐Fang Feng, Kai Wang and Yu‐Ling Li. Can J Chem Eng 1998, 76, 686. <https://doi.org/10.1002/cjce.5450760341>
  • Vivaldo-Lima Eduardo, Wood Philip E., Hamielec Archie E., Penlidis Alexander: An Updated Review on Suspension Polymerization. Ind. Eng. Chem. Res. 1997, 36, 939. <https://doi.org/10.1021/ie960361g>
  • Myers K. J., Ward R. W., Bakker Andre´: A Digital Particle Image Velocimetry Investigation of Flow Field Instabilities of Axial-Flow Impellers. Journal of Fluids Engineering 1997, 119, 623. <https://doi.org/10.1115/1.2819290>
  • Pettersson M., Rasmuson Å.C.: Application of Three-Dimensional Phase-Doppler Anemometry to Mechanically Agitated Crystallizers. Chemical Engineering Research and Design 1997, 75, 132. <https://doi.org/10.1205/026387697523589>