Collect. Czech. Chem. Commun. 1994, 59, 2303-2330

Synthesis of 2-Deoxy-β-D-ribonucleosides and 2,3-Dideoxy-β-D-pentofuranosides on Immobilized Bacterial Cells

Ivan Votruba, Antonín Holý, Hana Dvořáková, Jaroslav Günter, Dana Hocková, Hubert Hřebabecký, Tomas Cihlar and Milena Masojídková

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic


Alginate gel-entrapped cells of auxotrophic thymine-dependent strain of E. coli catalyze the transfer of 2-deoxy-D-ribofuranosyl moiety of 2'-deoxyuridine to purine and pyrimidine bases as well as their aza and deaza analogs. All experiments invariably gave β-anomers; in most cases, the reaction was regiospecific, affording N9-isomers in the purine and N1-isomers in the pyrimidine series. Also a 2,3-dideoxynucleoside can serve as donor of the glycosyl moiety. The acceptor activity of purine bases depends only little on substitution, the only condition being the presence of N7-nitrogen atom. On the other hand, in the pyrimidine series the activity is limited to only a narrow choice of mostly short 5-alkyl and 5-halogeno uracil derivatives. Heterocyclic bases containing amino groups are deaminated; this can be avoided by conversion of the base to the corresponding N-dimethylaminomethylene derivative which is then ammonolyzed. The method was verified by isolation of 9-(2-deoxy-β-D-ribofuranosyl) derivatives of adenine, guanine, 2-chloroadenine, 6-methylpurine, 8-azaadenine, 8-azaguanine, 1-deazaadenine, 3-deazaadenine, 1-(2-deoxy-β-D-ribofuranosyl) derivatives of 5-ethyluracil, 5-fluorouracil, and 9-(2,3-dideoxy-β-D-pentofuranosyl)hypoxanthine, 9-(2,3-dideoxy-β-D-pentofuranosyl)-6-methylpurine, and other nucleosides.