Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1993, 58, 961-982
https://doi.org/10.1135/cccc19930961

Free-Fall of Solid Particles through Fluids

Miroslav Hartmana and John G. Yatesb

a Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 165 02 Prague 6-Suchdol, Czech Republic
b Department of Chemical and Biochemical Engineering, University College London, London WC1E7JE, England

Crossref Cited-by Linking

  • Xie Jinghan, Zhang Lijuan, Lu Menghua, Lu Jie, Derksen Jos J.: Experiments and simulations of settling cylinders over a wide range of Archimedes numbers. Can J Chem Eng 2023, 101, 2240. <https://doi.org/10.1002/cjce.24544>
  • Seikh Asiful H., Adeyeye Oluwaseun, Omar Zurni, Raza Jawad, Rahimi-Gorji Mohammad, Alharthi Nabeel, Khan Ilyas: Enactment of implicit two-step Obrechkoff-type block method on unsteady sedimentation analysis of spherical particles in Newtonian fluid media. Journal of Molecular Liquids 2019, 293, 111416. <https://doi.org/10.1016/j.molliq.2019.111416>
  • Song Xianzhi, Xu Zhengming, Li Gensheng, Pang Zhaoyu, Zhu Zhaopeng: A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particle in Newtonian fluid. Powder Technology 2017, 321, 242. <https://doi.org/10.1016/j.powtec.2017.08.017>
  • Tian Lin, Ahmadi Goodarz, Tu Jiyuan: Mobility of nanofiber, nanorod, and straight-chain nanoparticles in gases. Aerosol Science and Technology 2017, 51, 587. <https://doi.org/10.1080/02786826.2017.1280596>
  • Mathai Varghese, Zhu Xiaojue, Sun Chao, Lohse Detlef: Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes of Freely Rising and Falling Cylinders. Phys. Rev. Lett. 2017, 119. <https://doi.org/10.1103/PhysRevLett.119.054501>
  • Yin Zegao, Wang Zhenlu, Liang Bingchen, Zhang Li, Poncet Sébastien: Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid. Mathematical Problems in Engineering 2017, 2017. <https://doi.org/10.1155/2017/9795286>
  • Balasubramanian Sivasamy, Suresh Krishnan, Karthikeyan Ramasamy: Dynamic simulation of spherical particle settling in quiescent water. Desalination and Water Treatment 2017, 71, 289. <https://doi.org/10.5004/dwt.2017.20546>
  • Zhong Wenqi, Yu Aibing, Liu Xuejiao, Tong Zhenbo, Zhang Hao: DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technology 2016, 302, 108. <https://doi.org/10.1016/j.powtec.2016.07.010>
  • Dioguardi Fabio, Mele Daniela: A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results. Powder Technology 2015, 277, 222. <https://doi.org/10.1016/j.powtec.2015.02.062>
  • Mohammadyari Reza, Rahimi Esboee Mazaher, Rahgoshay Majid: Analytical solution of settling behavior of a particle in incompressible Newtonian fluid by using Parameterized Perturbation Method. bspm 2014, 33, 145. <https://doi.org/10.5269/bspm.v33i2.22833>
  • Hartman Miloslav, Svoboda Karel, Pohořelý Michael, Šyc Michal, Jeremiáš Michal: Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures. Chem. Pap. 2013, 67, 164. <https://doi.org/10.2478/s11696-012-0267-7>
  • Yi Song Lin, Wang Zhi Ming, Yi Xian Zhong, Wan Wen Ni, Qi Hai Ying: Shape Description and Sedimentation Characteristics of Non Spherical Regular Particles. AMM 2013, 316-317, 1083. <https://doi.org/10.4028/www.scientific.net/AMM.316-317.1083>
  • Jalaal M., Ganji D.D., Ahmadi G.: An analytical study on settling of non‐spherical particles. Asia-Pacific J Chem Eng 2012, 7, 63. <https://doi.org/10.1002/apj.492>
  • Ganji D.D.: A semi-Analytical technique for non-linear settling particle equation of Motion. Journal of Hydro-environment Research 2012, 6, 323. <https://doi.org/10.1016/j.jher.2012.04.002>
  • Jalaal M., Ganji D.D., Ahmadi G.: Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Advanced Powder Technology 2010, 21, 298. <https://doi.org/10.1016/j.apt.2009.12.010>
  • Jalaal M., Khorshidi B., Esmaeilzadeh E.: An experimental study on the motion, deformation and electrical charging of water drops falling in oil in the presence of high voltage D.C. electric field. Experimental Thermal and Fluid Science 2010, 34, 1498. <https://doi.org/10.1016/j.expthermflusci.2010.07.014>
  • Khorshidi B., Jalaal M., Esmaeilzadeh E., Mohammadi F.: Characteristics of deformation and electrical charging of large water drops immersed in an insulating liquid on the electrode surface. Journal of Colloid and Interface Science 2010, 352, 211. <https://doi.org/10.1016/j.jcis.2010.08.026>
  • Jalaal M., Ganji D.D.: An analytical study on motion of a sphere rolling down an inclined plane submerged in a Newtonian fluid. Powder Technology 2010, 198, 82. <https://doi.org/10.1016/j.powtec.2009.10.018>
  • HOROWITZ M., WILLIAMSON C. H. K.: The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 2010, 651, 251. <https://doi.org/10.1017/S0022112009993934>
  • HOROWITZ M., WILLIAMSON C. H. K.: Vortex-induced vibration of a rising and falling cylinder. J. Fluid Mech. 2010, 662, 352. <https://doi.org/10.1017/S0022112010003265>
  • Hartman Miloslav, Trnka Otakar, Pohořelý Michael, Svoboda Karel: High-Temperature Reaction in the Freeboard Region above a Bubbling Fluidized Bed. Ind. Eng. Chem. Res. 2010, 49, 2672. <https://doi.org/10.1021/ie901760f>
  • Wang Jinsheng, Qi Haiying, You Changfu: Experimental study of sedimentation characteristics of spheroidal particles. Particuology 2009, 7, 264. <https://doi.org/10.1016/j.partic.2009.03.008>
  • Hartman Miloslav, Trnka Otakar, Svoboda Karel: Use of Pressure Fluctuations to Determine Online the Regime of Gas−Solids Suspensions from Incipient Fluidization to Transport. Ind. Eng. Chem. Res. 2009, 48, 6830. <https://doi.org/10.1021/ie900055x>
  • Hartman Miloslav, Trnka Otakar: Physical characteristics of fluidized beds via pressure fluctuation analysis. AIChE Journal 2008, 54, 1761. <https://doi.org/10.1002/aic.11518>
  • Mu Yang, Ren Ting-Ting, Yu Han-Qing: Drag Coefficient of Porous and Permeable Microbial Granules. Environ. Sci. Technol. 2008, 42, 1718. <https://doi.org/10.1021/es702708p>
  • Hartman Miloslav, Pohořelý Michael, Trnka Otakar: Fluidization of dried wastewater sludge. Powder Technology 2007, 178, 166. <https://doi.org/10.1016/j.powtec.2007.04.016>
  • Hartman Miloslav, Trnka Otakar: Three-dimensional modeling of a circulating fluidized-bed gasifier for sewage sludge. Chemical Engineering Science 2006, 61, 4132. <https://doi.org/10.1016/j.ces.2006.01.030>
  • Šiška Bedřich, Bendová Helena, Machač Ivan: Terminal velocity of non-spherical particles falling through a Carreau model liquid. Chemical Engineering and Processing: Process Intensification 2005, 44, 1312. <https://doi.org/10.1016/j.cep.2005.04.005>
  • Tran-Cong Sabine, Gay Michael, Michaelides Efstathios E: Drag coefficients of irregularly shaped particles. Powder Technology 2004, 139, 21. <https://doi.org/10.1016/j.powtec.2003.10.002>
  • Machač Ivan, Šiška Bedřich, Teichman Roman: Fall of non-spherical particles in a Carreau model liquid. Chemical Engineering and Processing: Process Intensification 2002, 41, 577. <https://doi.org/10.1016/S0255-2701(01)00179-9>
  • Boogerd P., Scarlett B., Brouwer R.: Recent modelling of sedimentation of suspended particles: a survey1. Irrigation and Drainage 2001, 50, 109. <https://doi.org/10.1002/ird.15>
  • Hartman M, Trnka O, Svoboda K: Fluidization characteristics of dolomite and calcined dolomite particles. Chemical Engineering Science 2000, 55, 6269. <https://doi.org/10.1016/S0009-2509(00)00409-7>
  • Machač Ivan, Šiška Bedřich, Machačová Ludmila: Terminal falling velocity of spherical particles moving through a Carreau model fluid. Chemical Engineering and Processing: Process Intensification 2000, 39, 365. <https://doi.org/10.1016/S0255-2701(99)00101-4>
  • Chhabra R.P., Agarwal L., Sinha N.K.: Drag on non-spherical particles: an evaluation of available methods. Powder Technology 1999, 101, 288. <https://doi.org/10.1016/S0032-5910(98)00178-8>
  • Yates J.G.: Effects of temperature and pressure on gas-solid fluidization. Chemical Engineering Science 1996, 51, 167. <https://doi.org/10.1016/0009-2509(95)00212-X>