Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1993, 58, 2769-2812
https://doi.org/10.1135/cccc19932769

Developments, Trends and Commercial Availability of Instrumentation (Hardware and Software) in Microcomputer Based Voltammetry

Alan M. Bonda and Miroslav Švestkab

a Department of Chemistry, La Trobe University, Bundoora 3083, Victoria, Australia
b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic

Crossref Cited-by Linking

  • Kennedy Gareth F., Bond Alan M., Simonov Alexandr N.: Modelling ac voltammetry with MECSim: facilitating simulation–experiment comparisons. Current Opinion in Electrochemistry 2017, 1, 140. <https://doi.org/10.1016/j.coelec.2016.12.001>
  • Ciepiela Filip, Lisak Grzegorz, Jakubowska Małgorzata: Self‐Referencing Background Correction Method for Voltammetric Investigation of Reversible Redox Reaction. Electroanalysis 2013, 25, 2054. <https://doi.org/10.1002/elan.201300181>
  • Bieniasz Lesław K.: Automatic simulation of electrochemical transients by the adaptive Huber method for Volterra integral equations involving Kernel terms exp[−α(t − τ)]erex{[β(t − τ)]1/2} and exp[−α(t − τ)]daw {[β(t − τ)]1/2}. J Math Chem 2012, 50, 765. <https://doi.org/10.1007/s10910-011-9923-3>
  • Bieniasz Lesław K.: Automatic solution of integral equations pertinent to diffusion with first order homogeneous reactions at cylindrical wire electrodes. Journal of Electroanalytical Chemistry 2012, 674, 38. <https://doi.org/10.1016/j.jelechem.2012.04.003>
  • Bieniasz Lesław K.: Automatic simulation of electrochemical transients assuming finite diffusion space at planar interfaces, by the adaptive Huber method for Volterra integral equations. Journal of Electroanalytical Chemistry 2012, 684, 20. <https://doi.org/10.1016/j.jelechem.2012.08.019>
  • Bieniasz Lesław K.: Automatic simulation of electrochemical transients at cylindrical wire electrodes, by the adaptive Huber method for Volterra integral equations. Journal of Electroanalytical Chemistry 2011, 662, 371. <https://doi.org/10.1016/j.jelechem.2011.09.010>
  • Bieniasz Lesław K.: Automatic simulation of cyclic voltammograms by the adaptive Huber method for weakly singular second kind Volterra integral equations. Electrochimica Acta 2010, 55, 721. <https://doi.org/10.1016/j.electacta.2009.09.022>
  • Bieniasz Lesław K.: Automatic simulation of cyclic voltammograms by the adaptive Huber method for systems of weakly singular Volterra integral equations. Journal of Electroanalytical Chemistry 2010, 642, 127. <https://doi.org/10.1016/j.jelechem.2010.02.029>
  • Bieniasz Lesław K.: Cyclic Voltammetric Current Functions Determined with a Prescribed Accuracy by the Adaptive Huber Method for Abel Integral Equations. Anal. Chem. 2008, 80, 9659. <https://doi.org/10.1021/ac801412f>
  • Ludwig Kai, Rajendran Lakshmanan, Speiser Bernd: EChem++ – an object oriented problem solving environment for electrochemistry. Part 1. A C++ class collection for electrochemical excitation functions. Journal of Electroanalytical Chemistry 2004, 568, 203. <https://doi.org/10.1016/j.jelechem.2004.01.024>
  • Kekedy-Nagy, Lászlo: Computer-Aided Analytical Methods - A Review. REVAC 2000, 19, 413. <https://doi.org/10.1515/REVAC.2000.19.6.413>
  • Stojanovic R.S., Greenhill H.B., Bond A.M., Anderson J.E.: Versatile computer-based instrumentation for the application of three-dimensional voltammetry. Computers & Chemistry 1996, 20, 209. <https://doi.org/10.1016/0097-8485(95)00053-4>