Collect. Czech. Chem. Commun. 1992, 57, 2215-2226

Dehydrogenation of Substituted Alcohols to Aldehydes on Zinc Oxide-Chromium Oxide Catalysts

Daniela Gulková and Miloš Kraus

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol


Sixteen primary alcohols of the structure RCH2OH (R = CH3, C2H5, (CH3)2CH, (CH3)3CCH2, HOCH2, CH3OCH2, C6H5, C6H5CH2, C6H5OCH2, ClCH2, BrCH2, F3C, CNCH2, (CH3)2NCH2, (C2H5)2NCH2 and tetrahydrofurfuryl) were explored for the possibility of obtaining the corresponding aldehydes by dehydrogenation on solid catalysts. Various catalysts were tested and two zinc oxide-chromium oxide catalysts were selected for further work because their activity and selectivity was satisfactory; moreover, the selectivity could be improved by addition of sodium into the catalysts and of water into the feed. The reaction was performed in the temperature range 250-450 °C and at atmospheric pressure. 2-Chloroethanol, 2-bromoethanol, ethylene glycol, 2-cyanoethanol and 2-(N,N-diethylamino)ethanol decomposed and deactivated the catalyst. The other alcohols were studied from the point of kinetics of dehydrogenation, which was described by a Langmuir-Hinshelwood type rate equation (3), and of substituent effects on rate, which were correlated by Taft equation (1) with the slope ρ = -1.46. The preparative value of catalytic dehydrogenation for obtaining substituted aldehydes was confirmed by prolonged runs and isolation of the aldehydic product by distillation using as the feeds 2-methoxyethanol and 2-(N,N-dimethylamino)ethanol, respectively.