Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1986, 51, 2301-2432
https://doi.org/10.1135/cccc19862301

P-V-T behaviour of hard body fluids. Theory and experiment

Tomáš Boublík and Ivo Nezbeda

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol

Crossref Cited-by Linking

  • Calandra Pietro, Caputo Paolino, Oliviero Rossi Cesare, Kozak Maciej, Taube Michał, Pochylski Mikolaj, Gapinski Jacek: From proton transfer to ionic liquids: How isolated domains of ion pairs grow to form extended network in diphenyl phosphate-bis(2-ethylhexyl) amine mixtures. Journal of Molecular Liquids 2024, 399, 124402. <https://doi.org/10.1016/j.molliq.2024.124402>
  • Nezbeda Ivo, Škvára Jiří: A remark on hard body fluids: density versus packing fraction and excluded volume. Molecular Physics 2024. <https://doi.org/10.1080/00268976.2024.2304648>
  • Arteca Gustavo A.: Interpretation of covolume in an extension of the Redlich–Kwong equation of state for real gases. J Math Chem 2023, 61, 1967. <https://doi.org/10.1007/s10910-023-01497-1>
  • Hordiichuk Volodymyr, Škvára Jiří, Trokhymchuk Andrij, Nezbeda Ivo: Structure and thermodynamics of a short-range Lennard-Jones fluid reference. Journal of Molecular Liquids 2023, 386, 122483. <https://doi.org/10.1016/j.molliq.2023.122483>
  • Porto Michele, Caputo Paolino, Calandra Pietro, Gapinski Jacek, Pochylski Mikolaj: Arising of magnetically induced optical birefringence in ionic liquid/dielectric systems: The case of diphenyl phosphate / bis(2-ethyl hexyl) amine. Journal of Molecular Liquids 2023, 389, 122912. <https://doi.org/10.1016/j.molliq.2023.122912>
  • Jin Jaehyeok, Schweizer Kenneth S., Voth Gregory A.: Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory. The Journal of Chemical Physics 2023, 158. <https://doi.org/10.1063/5.0116300>
  • Nezbeda Ivo, Klajmon Martin, Hrubý Jan: Thermodynamic properties of water from SAFT and CPA equations of state: A comprehensive assessment. Journal of Molecular Liquids 2022, 362, 119769. <https://doi.org/10.1016/j.molliq.2022.119769>
  • Marienhagen Philipp, Wagner Joachim: Equation of state of hard lenses: A combined virial series and simulation approach. Phys. Rev. E 2022, 106. <https://doi.org/10.1103/PhysRevE.106.014101>
  • Liu Hongqin: Carnahan-Starling type equations of state for stable hard disk and hard sphere fluids. Molecular Physics 2021, 119, e1886364. <https://doi.org/10.1080/00268976.2021.1886364>
  • Nezbeda I.: Structure of Simple Dipolar Water-Like Fluids: Primitive Model and Hard Tetrahedra. Front. Chem. 2021, 9. <https://doi.org/10.3389/fchem.2021.783741>
  • Alsaifi Nayef M.: Simulation‐based equations of state for the Lennard‐Jones fluid: Apparent success and hidden failure. AIChE Journal 2020, 66. <https://doi.org/10.1002/aic.16244>
  • Tian Jianxiang, Jiang Hua, Mulero A.: Performance of the asymptotic expansion method to derive equations of state for hard polyhedron fluids. Phys. Chem. Chem. Phys. 2020, 22, 10360. <https://doi.org/10.1039/D0CP00895H>
  • Tian Jianxiang, Jiao Yang: Predicting maximally random jammed packing density of non-spherical hard particles via analytical continuation of fluid equation of state. Phys. Chem. Chem. Phys. 2020, 22, 22635. <https://doi.org/10.1039/D0CP03799K>
  • Santos Andrés, Yuste Santos B., López de Haro Mariano: Structural and thermodynamic properties of hard-sphere fluids. The Journal of Chemical Physics 2020, 153. <https://doi.org/10.1063/5.0023903>
  • Grigoriev A. N., Kleshchonok T. V., Markov I. V., Bulavin L. A.: Monte-Carlo determination of adiabatic compressibility of hard spheres. Molecular Simulation 2020, 46, 905. <https://doi.org/10.1080/08927022.2020.1789124>
  • Martínez-Ratón Yuri, Velasco Enrique: Orientational ordering in a fluid of hard kites: A density-functional-theory study. Phys. Rev. E 2020, 102. <https://doi.org/10.1103/PhysRevE.102.052128>
  • Nezbeda Ivo: On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling. Front. Phys. 2020, 8. <https://doi.org/10.3389/fphy.2020.00287>
  • Nezbeda Ivo, Moučka Filip: Thermodynamics of supersaturated steam: Towards an equation of state. Fluid Phase Equilibria 2019, 484, 114. <https://doi.org/10.1016/j.fluid.2018.11.028>
  • de Francqueville Foucault, Gilormini Pierre, Diani Julie: Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres. International Journal of Solids and Structures 2019, 158, 277. <https://doi.org/10.1016/j.ijsolstr.2018.09.013>
  • Pieprzyk Sławomir, Bannerman Marcus N., Brańka Arkadiusz C., Chudak Maciej, Heyes David M.: Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation. Phys. Chem. Chem. Phys. 2019, 21, 6886. <https://doi.org/10.1039/C9CP00903E>
  • Tian Jianxiang, Jiang Hua, Mulero A.: New equations of state for the hard polyhedron fluids. Phys. Chem. Chem. Phys. 2019, 21, 13109. <https://doi.org/10.1039/C9CP02033K>
  • Tian Jianxiang, Jiang Hua, Mulero A.: Equations of the state of hard sphere fluids based on recent accurate virial coefficients B5–B12. Phys. Chem. Chem. Phys. 2019, 21, 13070. <https://doi.org/10.1039/C9CP02116G>
  • Kalyuzhnyi Yu., Škvára J., Nezbeda I.: Analytic results for the three- and four-particle correlation functions of the fluid of hard disks. The Journal of Chemical Physics 2019, 150. <https://doi.org/10.1063/1.5083890>
  • Morillo Neftalí, Patti Alessandro, Cuetos Alejandro: Brownian dynamics simulations of oblate and prolate colloidal particles in nematic liquid crystals. The Journal of Chemical Physics 2019, 150. <https://doi.org/10.1063/1.5090975>
  • Trokhymchuk Andrij, Schultz Andrew J., Kofke David A.: Alternative ensemble averages in molecular dynamics simulation of hard spheres. Molecular Physics 2019, 117, 3734. <https://doi.org/10.1080/00268976.2019.1664779>
  • Kubala Piotr, Cieśla Michał, Ziff Robert M.: Random sequential adsorption of particles with tetrahedral symmetry. Phys. Rev. E 2019, 100. <https://doi.org/10.1103/PhysRevE.100.052903>
  • Heyes David M., Santos Andrés: Chemical potential of a test hard sphere of variable size in hard-sphere fluid mixtures. The Journal of Chemical Physics 2018, 148. <https://doi.org/10.1063/1.5037856>
  • González-Calderón Alfredo: Second virial coefficient of Kihara molecules with variable range. Journal of Molecular Liquids 2017, 233, 528. <https://doi.org/10.1016/j.molliq.2017.03.007>
  • Irrgang M. Eric, Engel Michael, Schultz Andrew J., Kofke David A., Glotzer Sharon C.: Virial Coefficients and Equations of State for Hard Polyhedron Fluids. Langmuir 2017, 33, 11788. <https://doi.org/10.1021/acs.langmuir.7b02384>
  • Chen Mingfeng, He Min, Lin Pengcheng, Chen Ying, Cheng Zhengdong: Staged phase separation in the I–I–N tri-phase region of platelet–sphere mixtures. Soft Matter 2017, 13, 4457. <https://doi.org/10.1039/C7SM00478H>
  • Fiumara Giacomo, Saija Franz, Pellicane Giuseppe, López de Haro Mariano, Santos Andrés, Yuste Santos B.: Virial coefficients, equation of state, and demixing of binary asymmetric nonadditive hard-disk mixtures. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.4990614>
  • Herold Elisabeth, Hellmann Robert, Wagner Joachim: Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.5004687>
  • Gámez Francisco: Numerical evaluation of the second virial coefficients of anisotropic multipolar intermolecular potentials. Journal of Molecular Liquids 2016, 220, 731. <https://doi.org/10.1016/j.molliq.2016.05.021>
  • Heyes David M., Santos Andrés: Chemical potential of a test hard sphere of variable size in a hard-sphere fluid. The Journal of Chemical Physics 2016, 145. <https://doi.org/10.1063/1.4968039>
  • Palanco José M.G., MacDowell Luis G.: Analytic perturbative FMSA equation of state and thermodynamic properties from Monte Carlo simulation of the Kihara potential with a spherical core. Molecular Physics 2015, 113, 1076. <https://doi.org/10.1080/00268976.2014.1001804>
  • Solana J.R.: Equations of state of hard-body fluids: a new proposal. Molecular Physics 2015, 113, 1003. <https://doi.org/10.1080/00268976.2014.975764>
  • Noya Eva G., Almarza Noé G.: Entropy of hard spheres in the close-packing limit. Molecular Physics 2015, 113, 1061. <https://doi.org/10.1080/00268976.2014.982736>
  • Cuetos Alejandro, Martínez-Haya Bruno: Liquid crystal phase diagram of soft repulsive rods and its mapping on the hard repulsive reference fluid. Molecular Physics 2015, 113, 1137. <https://doi.org/10.1080/00268976.2014.996191>
  • Kolafa Jiří, Labík Stanislav: Virial coefficients and the equation of state of the hard tetrahedron fluid. Molecular Physics 2015, 113, 1119. <https://doi.org/10.1080/00268976.2014.996618>
  • Kežić-Lovrinčević Bernarda, Dartois Stéphane, Perera Aurélien: Repulsive core-soft models for binary aqueous mixtures. Molecular Physics 2015, 113, 1108. <https://doi.org/10.1080/00268976.2015.1005189>
  • Vega Carlos: Water: one molecule, two surfaces, one mistake. Molecular Physics 2015, 113, 1145. <https://doi.org/10.1080/00268976.2015.1005191>
  • Lustig Rolf, Rutkai Gabor, Vrabec Jadran: Thermodynamic correlation of molecular simulation data. Molecular Physics 2015, 113, 910. <https://doi.org/10.1080/00268976.2015.1023752>
  • Smith William R., Vega Carlos: Reminiscences about Tomáš Boublík, Ivo Nezbeda and the Liblice Meetings on the Statistical Mechanics of Liquids. Molecular Physics 2015, 113, 891. <https://doi.org/10.1080/00268976.2015.1031506>
  • Jirsák J, Škvor J: A molecular-based approach to the thermodynamics of aqueous solutions: binary mixture of water and carbon dioxide. J. Phys.: Condens. Matter 2015, 27, 194114. <https://doi.org/10.1088/0953-8984/27/19/194114>
  • Mamedov B.A., Somuncu E.: Analytical treatment of second virial coefficient over Lennard-Jones (2n−n) potential and its application to molecular systems. Journal of Molecular Structure 2014, 1068, 164. <https://doi.org/10.1016/j.molstruc.2014.04.006>
  • Ram Jokhan: Equilibrium theory of molecular fluids: Structure and freezing transitions. Physics Reports 2014, 538, 121. <https://doi.org/10.1016/j.physrep.2014.01.004>
  • Robles Miguel, López de Haro Mariano, Santos Andrés: Note: Equation of state and the freezing point in the hard-sphere model. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4870524>
  • Fiumara Giacomo, Pandaram Owen D., Pellicane Giuseppe, Saija Franz: Theoretical and computer simulation study of phase coexistence of nonadditive hard-disk mixtures. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4902440>
  • Mederos Luis, Velasco Enrique, Martínez-Ratón Yuri: Hard-body models of bulk liquid crystals. J. Phys.: Condens. Matter 2014, 26, 463101. <https://doi.org/10.1088/0953-8984/26/46/463101>
  • Pieprzyk S., Heyes D. M., Brańka A. C.: Thermodynamic properties and entropy scaling law for diffusivity in soft spheres. Phys. Rev. E 2014, 90. <https://doi.org/10.1103/PhysRevE.90.012106>
  • Krejčí J., Nezbeda I.: The critical temperature and properties of real gas from low order perturbed virial expansions. Fluid Phase Equilb 2012, 314, 156. <https://doi.org/10.1016/j.fluid.2011.10.005>
  • Calandra Pietro, Mandanici Andrea, Turco Liveri Vincenzo, Pochylski Mikolaj, Aliotta Francesco: Emerging dynamics in surfactant-based liquid mixtures: Octanoic acid/bis(2-ethylhexyl) amine systems. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3684713>
  • Ogarko V., Luding S.: Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3694030>
  • Saija Franz, Santos Andrés, Yuste Santos B., López de Haro Mariano: Fourth virial coefficients of asymmetric nonadditive hard-disk mixtures. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.4712035>
  • Jover J., Haslam A. J., Galindo A., Jackson G., Müller E. A.: Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4754275>
  • Barlow N. S., Schultz A. J., Weinstein S. J., Kofke D. A.: An asymptotically consistent approximant method with application to soft- and hard-sphere fluids. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4767065>
  • KHORDAD R., MIRHOSSEINI B.: SQUARE-WELL POTENTIAL WITH TEMPERATURE-DEPENDENT WIDTH OF THE ATTRACTIVE WELL: CALCULATION OF CRITICAL POINTS. Int. J. Mod. Phys. B 2012, 26, 1250123. <https://doi.org/10.1142/S0217979212501238>
  • Nezbeda Ivo, Rouha Michael: Extended excluded volume: Its origin and consequences. Pure and Applied Chemistry 2012, 85, 201. <https://doi.org/10.1351/PAC-CON-12-04-04>
  • Gámez Francisco, Lago Santiago, Plaza-Reyes Álvaro, González-Calderón Alfredo: Second virial coefficients of mesogenic intermolecular potentials. Journal of Molecular Liquids 2011, 164, 153. <https://doi.org/10.1016/j.molliq.2011.07.009>
  • Saija F.: The fourth virial coefficient of a nonadditive hard-disc mixture. Phys Chem Chem Phys 2011, 13, 11885. <https://doi.org/10.1039/c0cp02625e>
  • Nezbeda Ivo, Jirsák Jan: Water and aqueous solutions: simple non-speculative model approach. PCCP 2011, 13, 19689. <https://doi.org/10.1039/c1cp21903k>
  • Marechal Matthieu, Cuetos Alejandro, Martínez-Haya Bruno, Dijkstra Marjolein: Phase behavior of hard colloidal platelets using free energy calculations. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3552951>
  • Rouha Michael, Nezbeda Ivo: Excess properties of aqueous solutions: hard spheres versus pseudo-hard bodies. Molec Phys 2011, 109, 613. <https://doi.org/10.1080/00268976.2010.542779>
  • Téllez-Arredondo Pablo, Medeiros Milton, Piñeiro Manuel M., Cerdeiriña Claudio A.: Loci of extrema of thermodynamic response functions for the Lennard–Jones fluid. Mole Phys 2011, 109, 2443. <https://doi.org/10.1080/00268976.2011.619505>
  • Zhou Shi-Qi: Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures. Commun. Theor. Phys. 2011, 55, 46. <https://doi.org/10.1088/0253-6102/55/1/10>
  • MORADI M., KHORDAD R.: A TWO-COMPONENT FLUID MIXTURE OF THE HARD SPHEROCYLINDERS. Int. J. Mod. Phys. B 2011, 25, 301. <https://doi.org/10.1142/S0217979211057803>
  • Aliotta F., Giorgini M.G., Ponterio R.C., Saija F.: Brillouin scattering investigation of ME6N liquid crystal in CCl4. J Mol Liq 2010, 153, 67. <https://doi.org/10.1016/j.molliq.2009.07.013>
  • Drozd John J., Denniston Colin: Constitutive relations in dense granular flows. Phys. Rev. E 2010, 81. <https://doi.org/10.1103/PhysRevE.81.021305>
  • Shaul Katherine R. S., Schultz Andrew J., Kofke David A.: The effect of truncation and shift on virial coefficients of Lennard–Jones potentials. Collect. Czech. Chem. Commun. 2010, 75, 447. <https://doi.org/10.1135/cccc2009113>
  • Lüder Kai, Lindfors Lennart, Westergren Jan, Nordholm Sture, Persson Rasmus, Pedersen Mikaela: In silico prediction of drug solubility: 4. Will simple potentials suffice?. J Comput Chem 2009, 30, 1859. <https://doi.org/10.1002/jcc.21173>
  • Rouha M., Nezbeda I.: Fluids of pseudo-hard bodies: From simulations to equations of state. Fluid Phase Equilb 2009, 278, 15. <https://doi.org/10.1016/j.fluid.2008.11.020>
  • Zhou Shiqi, Solana J. R.: Progress in the Perturbation Approach in Fluid and Fluid-Related Theories. Chem. Rev. 2009, 109, 2829. <https://doi.org/10.1021/cr900094p>
  • Espíndola-Heredia Rodolfo, del Río Fernando, Malijevsky Anatol: Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion. The Journal of Chemical Physics 2009, 130. <https://doi.org/10.1063/1.3054361>
  • Santos Andrés, López de Haro Mariano: A branch-point approximant for the equation of state of hard spheres. The Journal of Chemical Physics 2009, 130. <https://doi.org/10.1063/1.3147723>
  • Martínez-Haya Bruno, Cuetos Alejandro: Columnar phases of discotics with orientation-dependent interactions. The Journal of Chemical Physics 2009, 131. <https://doi.org/10.1063/1.3207284>
  • Martínez-Haya Bruno, Cuetos Alejandro: Simulation study of discotic molecules in the vicinity of the isotropic–liquid crystal transition. Molec Sim 2009, 35, 1077. <https://doi.org/10.1080/08927020902833111>
  • Aliotta F., Saija F., Ponterio R. C.: Excess thermodynamic properties in liquid binary mixtures. J Raman Spectroscopy 2008, 39, 220. <https://doi.org/10.1002/jrs.1876>
  • Jackson George, Galindo Amparo, Lymperiadis Alexandros, Adjiman Claire S.: A generalisation of the SAFT- group contribution method for groups comprising multiple spherical segments. Fluid Phase Equilb 2008, 274, 85. <https://doi.org/10.1016/j.fluid.2008.08.005>
  • Heyes D. M., Rickayzen G., Powles J. G.: Monte Carlo simulations of fluids whose particles interact with a logarithmic potential. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2884691>
  • Cuetos Alejandro, Martínez-Haya Bruno: Columnar phases of discotic spherocylinders. The Journal of Chemical Physics 2008, 129. <https://doi.org/10.1063/1.3028539>
  • Gámez Francisco, Lago Santiago, Garzón Benito, Merkling Patrick J., Vega Carlos: Vapour–liquid equilibrium of fluids composed by oblate molecules. Molec Phys 2008, 106, 1331. <https://doi.org/10.1080/00268970802129826>
  • Masters A J: Virial expansions. J. Phys.: Condens. Matter 2008, 20, 283102. <https://doi.org/10.1088/0953-8984/20/28/283102>
  • Francová Magda, Kolafa Jiří, Morávek Pavel, Labík Stanislav, Malijevský Anatol: Fluids of Hard Nonspherical Molecules. I. Higher Virial Coefficients. Collect. Czech. Chem. Commun. 2008, 73, 413. <https://doi.org/10.1135/cccc20080413>
  • Morávek Pavel, Kolafa Jiří, Francová Magda: Fluids of Hard Nonspherical Molecules. II. Monte Carlo Data and Equation of State. Collect. Czech. Chem. Commun. 2008, 73, 459. <https://doi.org/10.1135/cccc20080459>
  • Behlke Joachim, Ristau Otto, Müller Eva-Christina, Hannemann Frank, Bernhardt Rita: Self-association of adrenodoxin studied by using analytical ultracentrifugation. biophys chem 2007, 125, 159. <https://doi.org/10.1016/j.bpc.2006.07.011>
  • McBride Carl, Lomba Enrique: Hard biaxial ellipsoids revisited: Numerical results. Fluid Phase Equilb 2007, 255, 37. <https://doi.org/10.1016/j.fluid.2007.03.026>
  • Lüder Kai, Lindfors Lennart, Westergren Jan, Nordholm Sture, Kjellander Roland: In Silico Prediction of Drug Solubility:  2. Free Energy of Solvation in Pure Melts. J. Phys. Chem. B 2007, 111, 1883. <https://doi.org/10.1021/jp0642239>
  • Heyes D. M., Cass M. J., Powles J. G., Evans W. A. B.: Self-Diffusion Coefficient of the Hard-Sphere Fluid:  System Size Dependence and Empirical Correlations. J. Phys. Chem. B 2007, 111, 1455. <https://doi.org/10.1021/jp067373s>
  • Pellicane G., Caccamo C., Giaquinta P. V., Saija F.: Virial Coefficients and Demixing of Athermal Nonadditive Mixtures. J. Phys. Chem. B 2007, 111, 4503. <https://doi.org/10.1021/jp070277m>
  • Lüder Kai, Lindfors Lennart, Westergren Jan, Nordholm Sture, Kjellander Roland: In Silico Prediction of Drug Solubility. 3. Free Energy of Solvation in Pure Amorphous Matter. J. Phys. Chem. B 2007, 111, 7303. <https://doi.org/10.1021/jp071687d>
  • Aliotta F., Ponterio R. C., Saija F., Salvato G., Triolo A.: Excess Thermodynamic Properties in Mixtures of a Representative Room-Temperature Ionic Liquid and Acetonitrile. J. Phys. Chem. B 2007, 111, 10202. <https://doi.org/10.1021/jp072836v>
  • Aliotta F., Gapiński J., Pochylski M., Ponterio R. C., Saija F., Salvato G.: Excess compressibility in binary liquid mixtures. The Journal of Chemical Physics 2007, 126, 224508. <https://doi.org/10.1063/1.2745292>
  • Siderius Daniel W., Corti David S.: On the use of multiple interpolation functions in scaled particle theory to improve the predictions of the properties of the hard-sphere fluid. The Journal of Chemical Physics 2007, 127. <https://doi.org/10.1063/1.2768967>
  • Ibarra-Avalos N., Gil-Villegas A., Martinez Richa A.: Excluded volume of hard cylinders of variable aspect ratio. Mol Simul 2007, 33, 505. <https://doi.org/10.1080/08927020701191349>
  • Malijevský Alexandr, Yuste Santos B., Santos Andrés, López de Haro Mariano: Multicomponent fluid of hard spheres near a wall. Phys. Rev. E 2007, 75. <https://doi.org/10.1103/PhysRevE.75.061201>
  • Heyes David M., Okumura Hisashi: Equation of state and structural properties of the Weeks-Chandler-Andersen fluid. The Journal of Chemical Physics 2006, 124. <https://doi.org/10.1063/1.2176675>
  • López de Haro M., Santos A., Yuste S. B.: On the radial distribution function of a hard-sphere fluid. The Journal of Chemical Physics 2006, 124. <https://doi.org/10.1063/1.2201699>
  • Martínez-Ratón Yuri, Velasco Enrique, Mederos Luis: Orientational ordering in hard rectangles: The role of three-body correlations. The Journal of Chemical Physics 2006, 125. <https://doi.org/10.1063/1.2209000>
  • Eskandari Nasrabad Afshin, Laghaei Rozita: Theoretical and computational investigations on thermodynamic properties, effective site diameters, and molecular free volume of carbon disulfide fluid. The Journal of Chemical Physics 2006, 125. <https://doi.org/10.1063/1.2358132>
  • Malijevský Alexandr: Alternative fundamental measure theory for additive hard sphere mixtures. The Journal of Chemical Physics 2006, 125. <https://doi.org/10.1063/1.2393242>
  • Heyes David M., Cass Michael, Brańka Arkadiusz C.: Percolation threshold of hard-sphere fluids in between the soft-core and hard-core limits. Mole Phys 2006, 104, 3137. <https://doi.org/10.1080/00268970600997721>
  • Heyes David M, Cass Michael, Brańka Arkadiusz C, Okumura Hisashi: First derivative of the hard-sphere radial distribution function at contact. J. Phys.: Condens. Matter 2006, 18, 7553. <https://doi.org/10.1088/0953-8984/18/32/004>
  • Brańka A. C., Heyes D. M.: Thermodynamic properties of inverse power fluids. Phys. Rev. E 2006, 74. <https://doi.org/10.1103/PhysRevE.74.031202>
  • Cuetos A., Martínez-Haya B., Lago S., Rull L. F.: Parsons−Lee and Monte Carlo Study of Soft Repulsive Nematogens. J. Phys. Chem. B 2005, 109, 13729. <https://doi.org/10.1021/jp051834c>
  • Boublík Tomáš: Geometrical Characteristics of the Enlarged Fused Hard Sphere Models of Simple Molecules. J. Phys. Chem. B 2005, 109, 19437. <https://doi.org/10.1021/jp0528717>
  • Santos A., López de Haro M., Yuste S. B.: Equation of state of nonadditive d-dimensional hard-sphere mixtures. The Journal of Chemical Physics 2005, 122. <https://doi.org/10.1063/1.1832591>
  • Kumar Jyotish, Dey Tarun K., Sinha Suresh K.: Semiclassical statistical mechanics of hard-body fluid mixtures. The Journal of Chemical Physics 2005, 122, 224504. <https://doi.org/10.1063/1.1917748>
  • Trokhymchuk Andrij, Nezbeda Ivo, Jirsák Jan, Henderson Douglas: Hard-sphere radial distribution function again. The Journal of Chemical Physics 2005, 123. <https://doi.org/10.1063/1.1979488>
  • You X.-M., Vlasov A. Yu., Masters A. J.: The equation of state of isotropic fluids of hard convex bodies from a high-level virial expansion. The Journal of Chemical Physics 2005, 123, 034510. <https://doi.org/10.1063/1.1992471>
  • Nezbeda * Ivo: Towards a unified view of fluids. Mole Phys 2005, 103, 59. <https://doi.org/10.1080/0026897042000274775>
  • Mulder * Bela M.: The excluded volume of hard sphero-zonotopes. Mole Phys 2005, 103, 1411. <https://doi.org/10.1080/00268970500077590>
  • Vlček Lukáš, Nezbeda * Ivo: From realistic to simple models of fluids. III. Primitive models of carbon dioxide, hydrogen sulphide and acetone, and their properties. Mole Phys 2005, 103, 1905. <https://doi.org/10.1080/00268970500083630>
  • Brańka * A. C., Heyes D. M.: The effects of particle softness on the dynamics of molecular and colloidal systems. Mole Phys 2005, 103, 2359. <https://doi.org/10.1080/00268970500105029>
  • Lago S., Cuetos A., Martínez‐Haya B., Rull L. F.: Crowding effects in binary mixtures of rod‐like and spherical particles. J of Molecular Recognition 2004, 17, 417. <https://doi.org/10.1002/jmr.704>
  • Nezbeda Ivo, Smith W.R: On the calculation of the critical temperature from the second virial coefficient. Fluid Phase Equilb 2004, 216, 183. <https://doi.org/10.1016/j.fluid.2003.11.006>
  • Jirsák Jan, Boublík Tomáš: Enthalpies of vaporization of n-alkanes from the enlarged fused hard sphere model. Fluid Phase Equilibria 2004, 226, 295. <https://doi.org/10.1016/j.fluid.2004.08.035>
  • Boublík Tomáš: Third and Fourth Virial Coefficients and the Equation of State of Hard Prolate Spherocylinders. J. Phys. Chem. B 2004, 108, 7424. <https://doi.org/10.1021/jp049502f>
  • Kolafa Jiří, Labík Stanislav, Malijevský Anatol: Accurate equation of state of the hard sphere fluid in stable and metastable regions. Phys. Chem. Chem. Phys. 2004, 6, 2335. <https://doi.org/10.1039/B402792B>
  • Oversteegen S. M., Lekkerkerker H. N. W.: Phase diagram of mixtures of hard colloidal spheres and discs: A free-volume scaled-particle approach. The Journal of Chemical Physics 2004, 120, 2470. <https://doi.org/10.1063/1.1637573>
  • Vl[cbreve]ek Luká[sbreve], Nezbeda * Ivo: Thermodynamics of simple models of associating fluids: primitive models of ammonia, methanol, ethanol and water. Molecular Physics 2004, 102, 771. <https://doi.org/10.1080/00268970410001705343>
  • Brańka † A. C., Heyes * D. M.: Equation of state of inverse power fluids. Mole Phys 2004, 102, 2049. <https://doi.org/10.1080/00268970412331292821>
  • Jirsák Jan, Boublík Tomáš: Average Correlation Functions of Hard Convex Body Mixtures. J. Phys. Chem. B 2003, 107, 13487. <https://doi.org/10.1021/jp0364093>
  • MacDowell L. G., Menduiña C., Vega C., de Miguel E.: Third virial coefficients and critical properties of quadrupolar two center Lennard-Jones models. Phys. Chem. Chem. Phys. 2003, 5, 2851. <https://doi.org/10.1039/B302780E>
  • de Miguel Enrique, Martı́n del Rı́o Elvira: Equation of state for hard Gaussian overlap fluids. The Journal of Chemical Physics 2003, 118, 1852. <https://doi.org/10.1063/1.1531611>
  • Barrio C., Solana J. R.: Contact pair correlation functions of binary mixtures of additive hard spheres from the virial expansion. The Journal of Chemical Physics 2003, 119, 3826. <https://doi.org/10.1063/1.1591718>
  • Boublı́k Tomáš: Virial coefficients and equation of state of hard chain molecules. The Journal of Chemical Physics 2003, 119, 7512. <https://doi.org/10.1063/1.1607913>
  • Largo J., Maeso M. J., Solana J. R., Vega C., MacDowell L. G.: Bonded hard-sphere theory and computer simulation of the equation of state of linear fused–hard-sphere fluids. The Journal of Chemical Physics 2003, 119, 9633. <https://doi.org/10.1063/1.1615964>
  • MacDowell L. G., Menduiña C., Vega C., de Miguel E.: Critical properties of molecular fluids from the virial series. The Journal of Chemical Physics 2003, 119, 11367. <https://doi.org/10.1063/1.1622373>
  • LABÍK STANISLAV, GABRIELOVÁ HANA, KOLAFA JI[Rbreve]Í, MALIJEVSKÝ ANATOL: Calculation of elementary diagrams using a Metropolis-like simulation method. Mole Phys 2003, 101, 1139. <https://doi.org/10.1080/0026897031000068596>
  • BARRIO C., SOLANA J. R.: Analytical representation of the higher virial coefficients of binary mixtures of additive hard spheres. Mole Phys 2003, 101, 1545. <https://doi.org/10.1080/0026897031000108096>
  • Costa D., Micali F., Saija F., Giaquinta P. V.: Entropy and Correlations in a Fluid of Hard Spherocylinders:  The Onset of Nematic and Smectic Order. J. Phys. Chem. B 2002, 106, 12297. <https://doi.org/10.1021/jp0259317>
  • DuBois Sylviane, Perera Aurélien: Entropy driven demixing in fluids of rigidly ordered particles. The Journal of Chemical Physics 2002, 116, 6354. <https://doi.org/10.1063/1.1458544>
  • Varga Szabolcs, Szalai István, Liszi János, Jackson George: A study of orientational ordering in a fluid of dipolar Gay–Berne molecules using density-functional theory. The Journal of Chemical Physics 2002, 116, 9107. <https://doi.org/10.1063/1.1469607>
  • Saija F., Giaquinta P. V.: Monte Carlo simulation and phase behavior of nonadditive hard-core mixtures in two dimensions. The Journal of Chemical Physics 2002, 117, 5780. <https://doi.org/10.1063/1.1501126>
  • Zhang Shu-Dong, Reynolds Paul A., van Duijneveldt Jeroen S.: Phase behavior of mixtures of colloidal platelets and nonadsorbing polymers. The Journal of Chemical Physics 2002, 117, 9947. <https://doi.org/10.1063/1.1518007>
  • Lyndon LARGO, VEGA C., MacDOWELL L. G., SOLANA J. R.: A computer simulation study of racemic mixtures. Mole Phys 2002, 100, 2397. <https://doi.org/10.1080/00268970110109871>
  • ZHANG SHU-DONG, REYNOLDS PAUL A., VAN DUIJNEVELDT JEROEN S.: Phase separation in mixtures of colloidal platelets and non-adsorbing polymer: a scaled particle treatment. Mole Phys 2002, 100, 3041. <https://doi.org/10.1080/00268970210130146>
  • KOLAFA JIŘÍ, LABÍK STANISLAV, MALIJEVSKÝ ANATOL: The bridge function of hard spheres by direct inversion of computer simulation data. Mole Phys 2002, 100, 2629. <https://doi.org/10.1080/00268970210136357>
  • PERERA AURELIÉN, CASSOU KEVIN, PLE FABIEN, DUBOIS SYLVIANE: Entropy driven demixing in binary mixtures of hard convex bodies: influence of molecular geometry. Mole Phys 2002, 100, 3409. <https://doi.org/10.1080/00268970210166237>
  • Dzugutov M.: Anomalous slowing down in the metastable liquid of hard spheres. Phys. Rev. E 2002, 65. <https://doi.org/10.1103/PhysRevE.65.032501>
  • Ghotbi Cyrus, Vera Juan H.: Extension to mixtures of two robust hard‐sphere equations of state satisfying the ordered close‐packed limit. Can J Chem Eng 2001, 79, 678. <https://doi.org/10.1002/cjce.5450790429>
  • Singh G.S., Kumar B.: Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems. Annals of Physics 2001, 294, 24. <https://doi.org/10.1006/aphy.2001.6166>
  • Barrio C., Largo J., Solana J.R.: A corresponding states principle for the equation of state of hard body fluid mixtures. Chemical Phys 2001, 263, 347. <https://doi.org/10.1016/S0301-0104(00)00360-8>
  • Omelyan Igor P., Ben-Amotz Dor: Self-consistent corrections to the equation of state and chemical potentials of hard chain fluid mixtures. The Journal of Chemical Physics 2001, 114, 5735. <https://doi.org/10.1063/1.1352644>
  • Pfleiderer Till, Bertagnolli Helmut, Tödheide Klaus, Soper Alan K.: High pressure neutron diffraction on fluid propane and a mixture of propane and methane. The Journal of Chemical Physics 2001, 115, 331. <https://doi.org/10.1063/1.1378067>
  • Boublı́k Tomáš: Ornstein–Zernike equation for convex molecule fluids. The Journal of Chemical Physics 2001, 115, 925. <https://doi.org/10.1063/1.1379762>
  • MAESO M. J., SOLANA J. R.: Effective volumes of hard homonuclear nonlinear triatomic molecules. Molecular Physics 2001, 99, 371. <https://doi.org/10.1080/00268970010013373>
  • JANEČEK JIŘÍ, BOUBLÍK TOMÁŠ: Cluster integrals contributing to the fourth virial coefficient of hard convex bodies. Molecular Physics 2001, 99, 435. <https://doi.org/10.1080/002689700l0015597>
  • KOLAFA JIŘÍ, NEZBEDA IVO, LÍSAL MARTIN: Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids. Mole Phys 2001, 99, 1751. <https://doi.org/10.1080/00268970110072386>
  • Bosetti Hadrien, Perera Aurélien: Entropy-driven demixing in spherocylinder binary mixtures. Phys. Rev. E 2001, 63. <https://doi.org/10.1103/PhysRevE.63.021206>
  • McBride Carl, Vega Carlos, MacDowell Luis G.: Isotropic-nematic phase transition: Influence of intramolecular flexibility using a fused hard sphere model. Phys. Rev. E 2001, 64. <https://doi.org/10.1103/PhysRevE.64.011703>
  • Behlke Joachim, Ristau Otto: Analysis of protein self-association under conditions of the thermodynamic non-ideality. biophys chem 2000, 87, 1. <https://doi.org/10.1016/S0301-4622(00)00173-3>
  • Ben-Amotz Dor, Omelyan Igor P.: Cavity formation energies for diatomic and spherical solutes in a diatomic hard body fluid. The Journal of Chemical Physics 2000, 113, 4349. <https://doi.org/10.1063/1.1288024>
  • Elliott J. A., Windle A. H.: A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. The Journal of Chemical Physics 2000, 113, 10367. <https://doi.org/10.1063/1.1322636>
  • Vega C., Labaig J. M., MacDowell L. G., Sanz E.: The virial coefficients of the pearl-necklace model. The Journal of Chemical Physics 2000, 113, 10398. <https://doi.org/10.1063/1.1322637>
  • Vörtler Horst L., Smith William R.: Computer simulation studies of a square-well fluid in a slit pore. Spreading pressure and vapor–liquid phase equilibria using the virtual-parameter-variation method. The Journal of Chemical Physics 2000, 112, 5168. <https://doi.org/10.1063/1.481072>
  • Fuchizaki Kazuhiro, Sugiyama Shuichi, Fujii Yasuhiko: Search for precursor of pressure-induced amorphization of molecular crystal SnI4: Thermodynamic stability of low-pressure crystalline phase. The Journal of Chemical Physics 2000, 112, 10379. <https://doi.org/10.1063/1.481675>
  • KADLEC PETR, JANEČEK JIŘÍ, BOUBLÍK TOMÁŠ: Systems of oblate molecules. Monte Carlo study. Mole Phys 2000, 98, 473. <https://doi.org/10.1080/00268970009483313>
  • VARGA SZABOLCS, SZALAI ISTVÁN: Modified Parsons-Lee theory for fluids of linear fused hard sphere chains. Mole Phys 2000, 98, 693. <https://doi.org/10.1080/00268970009483337>
  • Vega C., MacDowell L. G.: Critical temperature of infinitely long chains from Wertheim's perturbation theory. Mole Phys 2000, 98, 1295. <https://doi.org/10.1080/002689700413550>
  • Vega C.: Evaluating virial coefficients for multicomponent mixtures: hard sphere mixtures and flexible chains. Mole Phys 2000, 98, 973. <https://doi.org/10.1080/00268970050052024>
  • Lísal Martin, Aim Karel, Fischer Johann: Vapour–Liquid Equilibria of Dipolar Two-Centre Lennard-Jones Fluids from a Physically Based Equation of State and Computer Simulations. Molec Sim 2000, 23, 363. <https://doi.org/10.1080/08927020008023009>
  • Barrio C., Solana J. R.: Equation of state for fluid mixtures of hard spheres and heteronuclear hard dumbbells. The Journal of Chemical Physics 1999, 111, 4640. <https://doi.org/10.1063/1.479225>
  • BARRIO C., SOLANA J. R.: A new analytical equation of state for additive hard sphere fluid mixtures. Mole Phys 1999, 97, 797. <https://doi.org/10.1080/00268979909482880>
  • ŠINDELKA MILAN, BOUBLÓK TOMÁŠ: Cluster integrals of convex molecule systems. Molecular Physics 1999, 97, 1035. <https://doi.org/10.1080/00268979909482905>
  • SADUS RICHARD J.: An equation of state for hard convex body chains. Mole Phys 1999, 97, 1279. <https://doi.org/10.1080/00268979909482930>
  • SANTOS ANDRÉS, YUSTE SANTOS BRAVO, DE HARO MARIANO LÓPEZ: Equation of state of a multicomponent d-dimensional hard-sphere fluid. Molecular Physics 1999, 96, 1. <https://doi.org/10.1080/00268979909482932>
  • ŠINDELKA MILAN, BOUBLÍK TOMÁŠ: The third cross virial coefficient of hard convex bodies. Molecular Physics 1999, 96, 243. <https://doi.org/10.1080/00268979909482956>
  • Zhou Yaoqi, Hall Carol K.: Solute excluded-volume effects on the stability of globular proteins: A statistical thermodynamic theory. Biopolymers 1998, 38, 273. <https://doi.org/10.1002/(SICI)1097-0282(199602)38:2<273::AID-BIP11>3.0.CO;2-G>
  • Vega C., Garzón B., Lago S., Monson P.A.: Understanding the phase diagrams of quadrupolar molecules. J Mol Liq 1998, 76, 157. <https://doi.org/10.1016/S0167-7322(98)00060-9>
  • Khoshkbarchi Mohammad K., H. Vera Juan: A generalized mixing rule for hard-sphere equations of state of Percus–Yevick type. Fluid Phase Equilb 1998, 142, 131. <https://doi.org/10.1016/S0378-3812(97)00230-6>
  • Šindelka Milan, Boublı́k Tomáš: Simulations in ternary hard sphere mixtures. Fluid Phase Equilb 1998, 143, 13. <https://doi.org/10.1016/S0378-3812(97)00312-9>
  • Ramos J. Eloy, del Río Fernando, McLure Ian A.: Nonconformal Potentials and Second Virial Coefficients in Molecular Fluids. II. Applications to Nonspherical Molecules. J. Phys. Chem. B 1998, 102, 10576. <https://doi.org/10.1021/jp981040g>
  • Saija F., Pastore G., Giaquinta P. V.: Entropy and Fluid−Fluid Separation in Nonadditive Hard-Sphere Mixtures. J. Phys. Chem. B 1998, 102, 10368. <https://doi.org/10.1021/jp982202b>
  • Saija F., Fiumara G., Giaquinta P. V.: Virial expansion of a non-additive hard-sphere mixture. The Journal of Chemical Physics 1998, 108, 9098. <https://doi.org/10.1063/1.476355>
  • MacDowell L. G., Vega C.: The second virial coefficient of hard alkane models. The Journal of Chemical Physics 1998, 109, 5670. <https://doi.org/10.1063/1.477185>
  • Coussaert Tamara, Baus Marc: Demixing vs freezing of binary hard-sphere mixtures. The Journal of Chemical Physics 1998, 109, 6012. <https://doi.org/10.1063/1.477227>
  • BOUBLÍK TOMÁŠ: Critical behaviour of Kihara rod-like molecules. Molecular Physics 1998, 95, 363. <https://doi.org/10.1080/00268979809483168>
  • ENCISO E., ALMARZA N. G.: Thermodynamics of complex hard body fluids. Mole Phys 1998, 95, 635. <https://doi.org/10.1080/00268979809483196>
  • BLAAK RONALD: Exact analytic expression for a subset of fourth virial coefficients of polydisperse hard sphere mixtures. Mole Phys 1998, 95, 695. <https://doi.org/10.1080/00268979809483203>
  • MILAN PREDOTA IVO NEZBEDA YURIJ V.: Fluids of pseudo-hard bodies II. Reference models for water, methanol, and ammonia. Mole Phys 1998, 94, 937. <https://doi.org/10.1080/002689798167511>
  • C. BARRIO J. R. SOLANA: Equation of state for hard convex body fluid mixtures. Mole Phys 1998, 94, 809. <https://doi.org/10.1080/002689798167647>
  • BERTAGNOLLI H., WALDNER I., TODHEIDE K., FISCHER H.: Neutron diffraction experiments on ethane under high pressure. Mole Phys 1998, 94, 325. <https://doi.org/10.1080/002689798168204>
  • LABIK S., JIRASEK V., MALIJEVSKY A., SMITH W. R.: Modifications of the SP-MC method for the computer simulation of chemical potentials: ternary mixtures of fused hard sphere fluids. Mole Phys 1998, 94, 385. <https://doi.org/10.1080/002689798168268>
  • CHAMOUX ANTOINE, PERERA AURELIEN: On the linear hard sphere chain fluids. Molecular Physics 1998, 93, 649. <https://doi.org/10.1080/002689798168989>
  • Mecke M., Müller A., Winkelmann J., Fischer J.: An equation of state for two-center Lennard-Jones fluids. Int J Thermophys 1997, 18, 683. <https://doi.org/10.1007/BF02575128>
  • Stamatopoulou Argyroula, Ben-Amotz Dor: Chemical potentials of hard polyatomic solutes in hard sphere fluids. The Journal of Chemical Physics 1997, 106, 1181. <https://doi.org/10.1063/1.473213>
  • Hamad Esam Z.: A general mixture theory. II. Mixtures of nonspherical molecules. The Journal of Chemical Physics 1997, 106, 6116. <https://doi.org/10.1063/1.473233>
  • Ben-Amotz Dor: Excluded volume anisotropy and two-cavity distribution functions in hard sphere fluids. The Journal of Chemical Physics 1997, 106, 5631. <https://doi.org/10.1063/1.473583>
  • Padilla P., Velasco E.: The isotropic–nematic transition for the hard Gaussian overlap fluid: Testing the decoupling approximation. The Journal of Chemical Physics 1997, 106, 10299. <https://doi.org/10.1063/1.474075>
  • VEGA By CARLOS: Virial coefficients and equation of state of hard ellipsoids. Molecular Physics 1997, 92, 651. <https://doi.org/10.1080/002689797169934>
  • ENCISO By E., ALMARZA N. G., CALZAS D. S., GONZALEZ M. A.: Low density equation of state of asymmetric hard sphere mixtures. Molecular Physics 1997, 92, 173. <https://doi.org/10.1080/002689797170374>
  • SLOVAK JAN, NEZBEDA IVO: Extended five-site primitive models of water: theory and computer simulations. Mole Phys 1997, 91, 1125. <https://doi.org/10.1080/002689797170851>
  • HAMAD By ESAM Z.: RESEARCH NOTE Simulation and model testing of size asymmetric non-additive hard spheres. Molecular Physics 1997, 91, 371. <https://doi.org/10.1080/002689797171652>
  • SAIJA By F., GIAQUINTA G. FIUMARA and P. V.: Fifth virial coefficient of a two-component mixture of hard discs. Mole Phys 1997, 90, 679. <https://doi.org/10.1080/002689797172417>
  • Speedy Robin J: Pressure of the metastable hard-sphere fluid. J. Phys.: Condens. Matter 1997, 9, 8591. <https://doi.org/10.1088/0953-8984/9/41/006>
  • Maeso M. J., Solana J. R.: Corresponding-states principle for two-dimensional hard models of molecular fluids. Phys. Rev. E 1997, 56, 466. <https://doi.org/10.1103/PhysRevE.56.466>
  • Coussaert Tamara, Baus Marc: Virial Approach to Hard-Sphere Demixing. Phys. Rev. Lett. 1997, 79, 1881. <https://doi.org/10.1103/PhysRevLett.79.1881>
  • Müller Andreas, Winkelmann Jochen, Fischer Johann: Backone family of equations of state: 1. Nonpolar and polar pure fluids. AIChE Journal 1996, 42, 1116. <https://doi.org/10.1002/aic.690420423>
  • Gokhul Sudhir K, Sinha Suresh K: Perturbation theory of polar hard Gaussian overlap fluid mixtures. Pramana - J. Phys 1996, 46, 75. <https://doi.org/10.1007/BF02848225>
  • Smith William R., Vörtler Horst L.: Monte Carlo simulation of fluid phase equilibria in pore systems: square-well fluid distributed over a bulk and a slit-pore. Chemical Physics Letters 1996, 249, 470. <https://doi.org/10.1016/0009-2614(95)01433-0>
  • Caccamo C.: Integral equation theory description of phase equilibria in classical fluids. Phys Rep 1996, 274, 1. <https://doi.org/10.1016/0370-1573(96)00011-7>
  • Wang Wenhua, Khoshkbarchi Mohammad K., Vera Juan H.: A new volume dependence for the equations of state of hard spheres. Fluid Phase Equilb 1996, 115, 25. <https://doi.org/10.1016/0378-3812(95)02837-4>
  • Chen Shi-Fang, Chou Yo-Li, Chen Yan-Ping: A new cubic simplified perturbed hard-body equation of state. Fluid Phase Equilibria 1996, 118, 201. <https://doi.org/10.1016/0378-3812(95)02842-0>
  • Gil-Villegas Alejandro, del Río Fernando, Benavides Ana Laura: Deviations from corresponding-states behavior in the vapor-liquid equilibrium of the square-well fluid. Fluid Phase Equilb 1996, 119, 97. <https://doi.org/10.1016/0378-3812(95)02851-X>
  • Engkvist Ola, Karlström Gunnar: A method to calculate the probability distribution for systems with large energy barriers. Chemical Phys 1996, 213, 63. <https://doi.org/10.1016/S0301-0104(96)00247-9>
  • Lin Ho-mu, Chen Jui-Tang, Lee Ming-Jer: A cubic perturbed hard-chain equation of state. Fluid Phase Equilb 1996, 126, 29. <https://doi.org/10.1016/S0378-3812(96)03115-9>
  • Mehta Sameer D., Honnell Kevin G.: Equations of State and Virial Coefficients for Rigid Linear Chains. J. Phys. Chem. 1996, 100, 10408. <https://doi.org/10.1021/jp9535304>
  • Vega C., MacDowell L. G., Padilla P.: Equation of state for hard n-alkane models: Long chains. The Journal of Chemical Physics 1996, 104, 701. <https://doi.org/10.1063/1.470867>
  • Chamoux A., Perera A.: Approximations for the direct correlation function in multicomponent molecular fluids. The Journal of Chemical Physics 1996, 104, 1493. <https://doi.org/10.1063/1.470915>
  • Singh G. S., Kumar B.: Geometry of hard ellipsoidal fluids and their virial coefficients. The Journal of Chemical Physics 1996, 105, 2429. <https://doi.org/10.1063/1.472110>
  • Friedrich Axel, Lustig Rolf: Thermodynamic properties of model molecules with hexagonal symmetry from statistical mechanical theory. The Journal of Chemical Physics 1996, 105, 9597. <https://doi.org/10.1063/1.472792>
  • Hamad Esam Z.: Contact pair correlation functions and equation of state for nonadditive hard-sphere mixtures. The Journal of Chemical Physics 1996, 105, 3222. <https://doi.org/10.1063/1.472804>
  • Hamad Esam Z.: A general mixture theory. I. Mixtures of spherical molecules. The Journal of Chemical Physics 1996, 105, 3229. <https://doi.org/10.1063/1.472805>
  • Saija F., Fiumara G., Giaquinta P.V.: Fourth virial coefficient of hard-body mixtures in two and three dimensions. Mole Phys 1996, 87, 991. <https://doi.org/10.1080/00268979600100671>
  • Mehta Sameer D., Honnell Kevin G.: Generalized Flory theory for hard alkane fluids. Mole Phys 1996, 87, 1285. <https://doi.org/10.1080/00268979600100871>
  • VEGA CARLOS, MACDOWELL LUIS G.: Understanding the critical properties of chain molecules. Mole Phys 1996, 88, 1575. <https://doi.org/10.1080/00268979609484537>
  • SAIJA F.: RESEARCH NOTE Fifth virial coefficient of a hard-sphere mixture. Mole Phys 1996, 89, 1181. <https://doi.org/10.1080/002689796173570>
  • MAESO M. J.: RESEARCH NOTE A method for predicting the virial coefficients of hard linear homonuclear molecules. Mole Phys 1996, 89, 1209. <https://doi.org/10.1080/002689796173615>
  • Saija F, Giaquinta P V: Statistical entropy of a binary hard-sphere mixture: the low-density limit. J. Phys.: Condens. Matter 1996, 8, 8137. <https://doi.org/10.1088/0953-8984/8/43/010>
  • Strauβ G., Bassen A., Zweier H., Bertagnolli H., Tödheide K., Soper A. K., Turner J.: High-pressure neutron diffraction on fluid methane. Phys. Rev. E 1996, 53, 3505. <https://doi.org/10.1103/PhysRevE.53.3505>
  • Snider Neil: Effect of core nonsphericity on the entropy of simple liquids. Chemical Physics Letters 1995, 235, 365. <https://doi.org/10.1016/0009-2614(95)00105-D>
  • Nezbeda I., Kolafa J., Pavlíček J., Smith W. R.: Molecular theory of phase equilibria in model and real associated mixtures. II. Binary aqueous mixtures of inert gases and n-alkanes. The Journal of Chemical Physics 1995, 102, 9638. <https://doi.org/10.1063/1.468782>
  • Zhou Yaoqi, Stell George: Chemical association in simple models of molecular and ionic fluids. IV. New approximation for the cavity function and an application to the theory of weak electrolytes. The Journal of Chemical Physics 1995, 102, 8089. <https://doi.org/10.1063/1.469008>
  • Zhou Yaoqi, Stell George: Criticality of charged systems. II. The binary mixture of hard spheres and ions. The Journal of Chemical Physics 1995, 102, 5796. <https://doi.org/10.1063/1.469311>
  • Lee Lloyd L.: An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation. The Journal of Chemical Physics 1995, 103, 9388. <https://doi.org/10.1063/1.469998>
  • Lue Leo, Blankschtein Daniel: Analytical solutions of the proper integral equations for interaction site fluids: Molecules composed of hard-sphere interaction sites. The Journal of Chemical Physics 1995, 103, 7086. <https://doi.org/10.1063/1.470337>
  • Kolafa Jiří, Nezbeda Ivo: The hard tetrahedron fluid: a model for the structure of water?. Molecular Physics 1995, 84, 421. <https://doi.org/10.1080/00268979500100281>
  • Yoshimura Yosuke: Fluid structure around a rod-like molecule and the additivity rule of the partial molar quantities. Molecular Physics 1995, 85, 999. <https://doi.org/10.1080/00268979500101611>
  • Williamson Dave C., Jackson George: Excluded volume for a pair of linear chains of tangent hard spheres with an arbitrary relative orientation. Mole Phys 1995, 86, 819. <https://doi.org/10.1080/00268979500102391>
  • Baonza V. Garcia, Alonso M. Cáceres, Delgado J. Núñez: Generalized van der Waals Model Applied to Tetramethylsilane. Ber Bunsenges Phys Chem 1994, 98, 53. <https://doi.org/10.1002/bbpc.19940980108>
  • Maeso M. J., Solana J. R.: A corresponding-states principle for the equation of state of hard-convex-body fluids. Int J Thermophys 1994, 15, 933. <https://doi.org/10.1007/BF01447103>
  • Kaminsky R.D., Monson P.A.: A simple mean field theory of adsorption in disordered porous materials. Chemical Engineering Science 1994, 49, 2967. <https://doi.org/10.1016/0009-2509(94)E0114-6>
  • Brańka A.C., Wojciechowski K.W.: Equation of state of planar hard molecular fluids; hard cyclic multimer system. Chemical Phys 1994, 181, 29. <https://doi.org/10.1016/0301-0104(94)85011-9>
  • Kolafa Jiří, Nezbeda Ivo: The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equilibria 1994, 100, 1. <https://doi.org/10.1016/0378-3812(94)80001-4>
  • Li Meng-Hui, Huang Fu-Nan: Application of generalized van der Waals theory and approximations of radial distribution functions to the development of mixing rules. Fluid Phase Equilb 1994, 96, 155. <https://doi.org/10.1016/0378-3812(94)80092-8>
  • Iglesias Silva Gustavo A., Hall Kenneth R.: Accurate hard-body expressions for use as Zref. Fluid Phase Equilb 1994, 98, 49. <https://doi.org/10.1016/0378-3812(94)80107-X>
  • Maeso M. J., Solana J. R.: Equation of state for hard convex body fluids from the equation of state of the hard sphere fluid. The Journal of Chemical Physics 1994, 100, 3142. <https://doi.org/10.1063/1.466404>
  • Vega C., Lago S., Garzón B.: Virial coefficients and equation of state of hard alkane models. The Journal of Chemical Physics 1994, 100, 2182. <https://doi.org/10.1063/1.466515>
  • Ghonasgi Dhananjay, Chapman Walter G.: A new equation of state for hard chain molecules. The Journal of Chemical Physics 1994, 100, 6633. <https://doi.org/10.1063/1.467021>
  • Vega Carlos, Lago Santiago: Isotropic-nematic transition of hard polar and nonpolar molecules. The Journal of Chemical Physics 1994, 100, 6727. <https://doi.org/10.1063/1.467033>
  • Phan S., Kierlik E., Rosinberg M. L.: An equation of state for fused hard-sphere polyatomic molecules. The Journal of Chemical Physics 1994, 101, 7997. <https://doi.org/10.1063/1.468226>
  • Vega Carlos, Lago Santiago, Garzón Benito: Linear hard sphere models Virial coefficients and equation of state. Molecular Physics 1994, 82, 1233. <https://doi.org/10.1080/00268979400100874>
  • Wertheim M.S.: Fluids of hard convex molecules. Molecular Physics 1994, 83, 519. <https://doi.org/10.1080/00268979400101401>
  • Labík S., Malijevský A., Smith W.R.: A new geometrically based integral equation hierarchy for hard-sphere systems. Molecular Physics 1994, 83, 983. <https://doi.org/10.1080/00268979400101711>
  • Boublík Tomáš: Third virial coefficient and the hard convex body equation of state. Mole Phys 1994, 83, 1285. <https://doi.org/10.1080/00268979400101951>
  • Nezbeda Ivo, Vörtler Horst L.: Volume‐Explicit Perturbed Hard‐Sphere Equation of State for Dense Gases at High Pressures. Ber Bunsenges Phys Chem 1993, 97, 128. <https://doi.org/10.1002/bbpc.19930970121>
  • Maeso M. J., Solana J. R.: Equations of state for fused-hard-sphere fluids. Int J Thermophys 1993, 14, 1051. <https://doi.org/10.1007/BF00505675>
  • Maeso M.J., Solana J.R., Amoros J.: Equations of state for non-spherical hard-particle fluids. Material Chemistry and Physics 1993, 33, 134. <https://doi.org/10.1016/0254-0584(93)90104-T>
  • Masters A. J., Whittle M.: The application of some spherical reference theories to the hard spheroid fluid. The Journal of Chemical Physics 1993, 99, 6205. <https://doi.org/10.1063/1.466174>
  • Rigby Maurice: Virial coefficients of hard convex molecules in two dimensions. Molecular Physics 1993, 78, 21. <https://doi.org/10.1080/00268979300100031>
  • Sear Richard P., Amos Michael D., Jackson George: Bonded hard-sphere theory and computer simulations of polyatomic hard-sphere models of alkanes and their derivatives. Mole Phys 1993, 80, 777. <https://doi.org/10.1080/00268979300102631>
  • Smith W.R., Labík S.: Two new exact criteria for hard-sphere mixtures. Molecular Physics 1993, 80, 1561. <https://doi.org/10.1080/00268979300103231>
  • García Baonza V., Alonso M. Cáceres, Delgado J. Núñez: Study of the Equation of State of Cyclopentane from 193 to 298 K and Pressures up to 104 MPa. Ber Bunsenges Phys Chem 1992, 96, 1859. <https://doi.org/10.1002/bbpc.19920961215>
  • Stell George, Zhou Yaoqi: Microscopic modelling of association. Fluid Phase Equilb 1992, 79, 1. <https://doi.org/10.1016/0378-3812(92)85116-P>
  • Zhou Yaoqi, Stell George: Chemical association in simple models of molecular and ionic fluids. III. The cavity function. The Journal of Chemical Physics 1992, 96, 1507. <https://doi.org/10.1063/1.462185>
  • Vega C., Paras E. P. A., Monson P. A.: Solid–fluid equilibria for hard dumbbells via Monte Carlo simulation. The Journal of Chemical Physics 1992, 96, 9060. <https://doi.org/10.1063/1.462214>
  • Ben-Amotz Dor, Lee Meng-Rong, Cho Seung Y., List Donald J.: Solvent and pressure-induced perturbations of the vibrational potential surface of acetonitrile. The Journal of Chemical Physics 1992, 96, 8781. <https://doi.org/10.1063/1.462285>
  • Amos Michael D., Jackson George: Bonded hard-sphere (BHS) theory for the equation of state of fused hard-sphere polyatomic molecules and their mixtures. The Journal of Chemical Physics 1992, 96, 4604. <https://doi.org/10.1063/1.462796>
  • Lee Lloyd L.: Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function. The Journal of Chemical Physics 1992, 97, 8606. <https://doi.org/10.1063/1.463379>
  • Nezbeda Ivo, Smith William R.: Theory of the glass transition and the amorphous state. Molecular Physics 1992, 75, 789. <https://doi.org/10.1080/00268979200100601>
  • Vega Carlos, Gubbins Keith E.: Monte Carlo study of quadrupolar Kihara fluids. Molecular Physics 1992, 75, 881. <https://doi.org/10.1080/00268979200100671>
  • Río Fernando Del: Effective hard-sphere diameters and equations of state. Mole Phys 1992, 76, 29. <https://doi.org/10.1080/00268979200101141>
  • Maeso M.J., Solana J.R., Amoros J.: More accurate equations of state for non-spherical hard-particle fluids. Mole Phys 1992, 76, 1269. <https://doi.org/10.1080/00268979200102051>
  • Cuesta José A., Tejero Carlos F., Baus Marc: Isotropic-nematic transition ofD-dimensional hard convex bodies within the effective-liquid approach. Phys. Rev. A 1992, 45, 7395. <https://doi.org/10.1103/PhysRevA.45.7395>
  • Vega Carlos, Lago Santigo: Improved perturbation theory of Kihara fluids. Chemical Physics Letters 1991, 185, 516. <https://doi.org/10.1016/0009-2614(91)80253-T>
  • Cuesta J.A., Tejero C.F.: Second virial coefficient of the D-dimensional hard Gaussian overlap model. Lett A 1991, 152, 15. <https://doi.org/10.1016/0375-9601(91)90620-N>
  • Vega Carlos, Lago Santiago: Perturbation theory of angular molecules interacting through the Kihara potential. The Journal of Chemical Physics 1991, 94, 310. <https://doi.org/10.1063/1.460399>
  • Wojciechowski K. W.: Hard star-shaped bodies and Monte Carlo simulations. The Journal of Chemical Physics 1991, 94, 4099. <https://doi.org/10.1063/1.460642>
  • Loeser John G., Zhen Zheng, Kais Sabre, Herschbach Dudley R.: Dimensional interpolation of hard sphere virial coefficients. The Journal of Chemical Physics 1991, 95, 4525. <https://doi.org/10.1063/1.461776>
  • Vega Carlos, Lago Santiago: Structural study of the angle-averaged soft Kihara potential for linear molecular models. Molecular Physics 1991, 72, 215. <https://doi.org/10.1080/00268979100100151>
  • Kranendonk W.G.T., Frenkel D.: Thermodynamic properties of binary hard sphere mixtures. Molecular Physics 1991, 72, 715. <https://doi.org/10.1080/00268979100100521>
  • Kolafa Jiří, Nezbeda Ivo: Primitive models of associated liquids : Equation of state, liquid-gas phase transition, and percolation threshold. Mole Phys 1991, 72, 777. <https://doi.org/10.1080/00268979100100551>
  • Boublík Tomáš: Equilibrium behaviour of quadrupolar Kihara molecule fluids. Mole Phys 1991, 73, 417. <https://doi.org/10.1080/00268979100101281>
  • Labík S., Malijevský A., Smith W.R.: An accurate integral equation for molecular fluids : Part II. Hard heteronuclear diatomics. Mole Phys 1991, 73, 495. <https://doi.org/10.1080/00268979100101341>
  • de Lonngi Dolores Ayala, Villanueva Pablo Alejandro Lonngi: Irreducible rational approximants for the hard-sphere fluid. Mole Phys 1991, 73, 763. <https://doi.org/10.1080/00268979100101531>
  • Archer Amanda L., Jackson George: Theory and computer simulations of heteronuclear diatomic hard-sphere molecules (hard dumbbells). Mole Phys 1991, 73, 881. <https://doi.org/10.1080/00268979100101631>
  • Amos Michael D., Jackson George: BHS theory and computer simulations of linear heteronuclear triatomic hard-sphere molecules. Mole Phys 1991, 74, 191. <https://doi.org/10.1080/00268979100102161>
  • Nezbeda Ivo, Kolafa Jiří: A New Version of the Insertion Particle Method for Determining the Chemical Potential by Monte Carlo Simulation. Molecular Simulation 1991, 5, 391. <https://doi.org/10.1080/08927029108022424>
  • Wojciechowski K. W., Frenkel D., Brańka A. C.: Nonperiodic solid phase in a two-dimensional hard-dimer system. Phys. Rev. Lett. 1991, 66, 3168. <https://doi.org/10.1103/PhysRevLett.66.3168>
  • Vörtler Horst L., Nezbeda Ivo: Volume‐Explicit Equation of State and Excess Volume of Mixing of Fused‐Hard‐Sphere Fluids. Ber Bunsenges Phys Chem 1990, 94, 559. <https://doi.org/10.1002/bbpc.19900940505>
  • Boublík T., Vega C., Diaz-Peña M.: Equation of state of chain molecules. The Journal of Chemical Physics 1990, 93, 730. <https://doi.org/10.1063/1.459523>
  • Boublik Tomá[sbreve]: Perturbation theory of pure quadrupolar hard gaussian overlap fluids. Molecular Physics 1990, 69, 497. <https://doi.org/10.1080/00268979000100361>
  • Boublík T., Díaz Peña M.: The equation of state of hard Gaussian-overlap fluids. Molecular Physics 1990, 70, 1115. <https://doi.org/10.1080/00268979000101561>
  • Nezbeda Ivo, Reddy M. Rami, Smith William R.: Monte Carlo study of hard-body fluids at a hard wall: pure fluids and mixtures of spheres, heteronuclear dumbbells and linear triatomics. Mole Phys 1990, 71, 915. <https://doi.org/10.1080/00268979000102231>
  • Song Yuhua, Mason E. A.: Equation of state for a fluid of hard convex bodies in any number of dimensions. Phys. Rev. A 1990, 41, 3121. <https://doi.org/10.1103/PhysRevA.41.3121>
  • Veerman J. A. C., Frenkel D.: Phase diagram of a system of hard spherocylinders by computer simulation. Phys. Rev. A 1990, 41, 3237. <https://doi.org/10.1103/PhysRevA.41.3237>
  • Song Yuhua, Mason E. A.: Analytical equation of state for molecular fluids: Kihara model for rodlike molecules. Phys. Rev. A 1990, 42, 4743. <https://doi.org/10.1103/PhysRevA.42.4743>
  • Song Yuhua, Mason E. A.: Analytical equation of state for molecular fluids: Comparison with experimental data. Phys. Rev. A 1990, 42, 4749. <https://doi.org/10.1103/PhysRevA.42.4749>
  • Allen Michael P., Wilson Mark R.: Computer simulation of liquid crystals. J Computer-Aided Mol Des 1989, 3, 335. <https://doi.org/10.1007/BF01532020>
  • Gazzillo D., Pastore G.: Equation of state for symmetric non-additive hard-sphere fluids: An approximate analytic expression and new Monte Carlo results. Chemical Physics Letters 1989, 159, 388. <https://doi.org/10.1016/0009-2614(89)87505-0>
  • Allen M.P., Frenkel D., Talbot J.: Contents to volume 9. Computer Physics Reports 1989, 9, 355. <https://doi.org/10.1016/0167-7977(89)90009-9>
  • Peña M.Diaz, Rubio R.G., Pedrazuela J.: Calculation of the average correlation function of hard convex molecules from the structure of a hard sphere system. Fluid Phase Equilibria 1989, 48, 31. <https://doi.org/10.1016/0378-3812(89)80192-X>
  • Deiters U.K.: Extended 1-fluid theory for mixtures containing non-spherical molecules. Fluid Phase Equilb 1989, 48, 185. <https://doi.org/10.1016/0378-3812(89)80201-8>
  • Nezbeda Ivo, Aim Karel: On the way from theoretical calculations to practical equations of state for real fluids. Fluid Phase Equilb 1989, 52, 39. <https://doi.org/10.1016/0378-3812(89)80309-7>
  • Fischer J., Bohn M.: Effect of molecular shape on liquid mixture excess properties. Fluid Phase Equilb 1989, 51, 245. <https://doi.org/10.1016/0378-3812(89)80368-1>
  • Somoza A. M., Tarazona P.: Density functional approximation for hard-body liquid crystals. The Journal of Chemical Physics 1989, 91, 517. <https://doi.org/10.1063/1.457487>
  • Speedy R.J., Prielmeier F.X., Vardag T., Lang E.W., Lüdemann H.-D.: Diffusion in simple fluids. Mole Phys 1989, 66, 577. <https://doi.org/10.1080/00268978900100341>
  • Cooney W.R., Thompson S.M., Gubbins K.E.: Virial coefficients for the hard oblate spherocylinder fluid. Molecular Physics 1989, 66, 1269. <https://doi.org/10.1080/00268978900100861>
  • Vega Carlos, Frenkel Daan: Monte Carlo study of rod-like molecules : A test of perturbation theory for the Kihara model. Mole Phys 1989, 67, 633. <https://doi.org/10.1080/00268978900101331>
  • Vörtler Horst L., Kolafa Jiři, Nezbeda Ivo: Computer simulation studies of hard body fluid mixtures II. Molecular Physics 1989, 68, 547. <https://doi.org/10.1080/00268978900102351>
  • Frenkel D.: Invited Lecture. Columnar ordering as an excluded-volume effect. Liquid Crystals 1989, 5, 929. <https://doi.org/10.1080/02678298908026399>
  • Allen M. P.: A Molecular Dynamics Simulation Study of Rigid and Non-rigid Hard Dumb-bells. Molecular Simulation 1989, 3, 251. <https://doi.org/10.1080/08927028908031378>
  • Jackson G., Chapman W. G., Gubbins K. E.: Phase equilibria of associating fluids of spherical and chain molecules. Int J Thermophys 1988, 9, 769. <https://doi.org/10.1007/BF00503243>
  • Zhou Y., Stell G.: Equations of state for hard-sphere fluids. Int J Thermophys 1988, 9, 953. <https://doi.org/10.1007/BF01133263>
  • Nezbeda I., Tříska B., Malijevský A.: The fifth virial coefficients of fused hard sphere fluids. Czech J Phys 1988, 38, 1234. <https://doi.org/10.1007/BF01597292>
  • Singh T P, Sinha J P, Sinha S K: Equilibrium properties of hard non-sphere fluids. Pramana - J. Phys 1988, 31, 289. <https://doi.org/10.1007/BF02847747>
  • de Azevedo Edmundo Gomes, Prausnitz John M.: Effects of molecular size and shape on thermodynamic properties of fluid mixtures. Fluid Phase Equilb 1988, 41, 109. <https://doi.org/10.1016/0378-3812(88)80039-6>
  • Mehnert R., Brede O., Naumann W., Hermann R.: The mechanism of singlet energy transfer from alkanes. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 1988, 32, 325. <https://doi.org/10.1016/1359-0197(88)90029-X>
  • Labik S., Smith William R.: Structure of hard-particle fluids near a hard wall. III. y w(z) for hard-sphere mixtures. The Journal of Chemical Physics 1988, 88, 3893. <https://doi.org/10.1063/1.453838>
  • Labik S., Smith William R., Speedy Robin J.: Structure of hard particle fluids near a hard wall. II. y w(z) for hard spheres. The Journal of Chemical Physics 1988, 88, 1944. <https://doi.org/10.1063/1.454118>
  • Zhou Yaoqi, Stell George: The theory of semipermeable vesicles and membranes: An integral-equation approach. I. General formalism and application to a hard-sphere mixture. The Journal of Chemical Physics 1988, 89, 7010. <https://doi.org/10.1063/1.455327>
  • Kolafa Jiří: On optimization of Monte Carlo simulations. Mole Phys 1988, 63, 559. <https://doi.org/10.1080/00268978800100381>
  • Bohn Michael, Lustig Rolf, Fischer Johann, Kohler Friedrich: Thermodynamic perturbation theory for mixtures of spherical and tetrahedral molecules. Mole Phys 1988, 64, 595. <https://doi.org/10.1080/00268978800100423>
  • Perram John W., Rasmussen John, Præstgaard Eigil: On the determination of effective hard convex body parameters for liquid mixtures. Mole Phys 1988, 64, 617. <https://doi.org/10.1080/00268978800100433>
  • Colot Jean-Louis, Wu Xiao-Guang, Xu Hong, Baus Marc: Density-functional, Landau, and Onsager theories of the isotropic-nematic transition of hard ellipsoids. Phys. Rev. A 1988, 38, 2022. <https://doi.org/10.1103/PhysRevA.38.2022>
  • Labík Stanislav, Malijevský Anatol, Nezbeda Ivo: Correlation functions of hard body fluids from thermodynamic properties of their mixtures. Mole Phys 1987, 60, 1107. <https://doi.org/10.1080/00268978700100741>
  • Shukla K.P.: Thermodynamic properties of simple fluid mixtures from perturbation theory. Mole Phys 1987, 62, 1143. <https://doi.org/10.1080/00268978700102861>
  • Baus Marc, Colot Jean-Louis, Wu Xiao-Guang, Xu Hong: Finite-density Onsager-type theory for the isotropic-nematic transition of hard ellipsoids. Phys. Rev. Lett. 1987, 59, 2184. <https://doi.org/10.1103/PhysRevLett.59.2184>