Collect. Czech. Chem. Commun. 1983, 48, 722-734
https://doi.org/10.1135/cccc19830722

Flame ionization detector response to coeluting hydrocarbons and carbon disulphide and its application to the determination of the sum of C6-C11 alkanes and cycloalkanes in air

Martin Koval

Hygienic Station of City Ostrava, 758 56 Ostrava 1

Abstract

The flame ionisation detector response to C6-C11 aliphatic hydrocarbon solutions in carbon disulphide in the concentration range between 1.3-9.5 mg ml-1 retained lineary despite the excess of solvent entering the detector simultaneously with the analyte. Pure carbon disulphide exhibited a small positive detector response which did not interfere in calibration procedure and which, under certain GC conditions, inverted to negative values. This response was not proportional to the injected volume and was strongly influenced by the column temperature and/or bleed. On the basis of these findings, a method compatible with the widely used charcoal tube carbon disulphide desorption procedure was developed and evaluated. It consists of static desorption of the sum of aliphatic alkanes and cycloalkanes from the activated charcoal after which an internal standard is added to the supernatant eluate. The resulting carbon disulphide solution is analysed on a highly polar stationary phase 1,2,3-tris(2-cyanoethoxy)propane where the solvent and the analyte coelute in a single peak, the height of which is practically proportional to the sum of alkanes and cycloalkanes present. This also makes determinations of other substances present in the sample more simple. The field test of the proposed method yielded values comparable in precision and accuracy with a control infrared spectrophotometric method.