Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1982, 47, 226-239
https://doi.org/10.1135/cccc19820226

Flow of liquid in a cylindrical vessel with a turbine impeller and radial baffles

Ivan Fořta, Ahmed Obeida and Vítězslav Březinab

a Department of Chemical Engineering, Prague Institute of Chemical Technology, 166 28 Prague 6
b Department of Mathematics, Prague Institute of Chemical Technology, 166 28 Prague 6

Crossref Cited-by Linking

  • Šulc R., Ditl P., Jašíkova D., Kotek M., Kopecký V., Kysela B.: The Minimum Recording Time for PIV Measurements in a Vessel Agitated by a High-Shear Tooth Impeller. Fluid Dyn 2020, 55, 231. <https://doi.org/10.1134/S0015462820020123>
  • Šulc Radek, Ditl Pavel, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš: Effect of Particle Image Velocimetry Setting Parameters on Local Velocity Measurements in an Agitated Vessel. Chem Eng & Technol 2019, 42, 827. <https://doi.org/10.1002/ceat.201800589>
  • Šulc Radek, Ditl Pavel, Fořt Ivan, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš, Dančová P., Novosad J.: Local velocity scaling in upward flow to tooth impeller in a fully turbulent region. EPJ Web Conf. 2019, 213, 02081. <https://doi.org/10.1051/epjconf/201921302081>
  • Šulc Radek, Ditl Pavel, Fořt Ivan, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš, Dančová P.: Local velocity scaling in an impeller discharge flow in T400 vessel agitated by tooth impeller in a fully turbulent region. EPJ Web Conf. 2018, 180, 02102. <https://doi.org/10.1051/epjconf/201817002102>
  • Šulc Radek, Ditl Pavel, Fořt Ivan, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš, Dančová P.: Local velocity scaling in an impeller discharge flow in T400 vessel agitated by tooth impeller in a fully turbulent region. EPJ Web Conf. 2018, 180, 02102. <https://doi.org/10.1051/epjconf/201818002102>
  • Šulc R., Ditl P.: Local Energy Dissipation Rate in an Agitated Vessel—a Comparison of Evaluation Methods. Fluid Dyn 2018, 53, 200. <https://doi.org/10.1134/S0015462818020143>
  • Ditl P., Šulc R., Pešava V., Jašíkova D., Kotek M., Kopecký V., Kysela B.: Local Turbulent Energy Dissipation Rate in an Agitated Vessel: Experimental and Turbulence Scaling. Theor Found Chem Eng 2018, 52, 122. <https://doi.org/10.1134/S0040579518010037>
  • Šulc Radek, Ditl Pavel: Scaling the Velocity Gradients in a Vessel Agitated by a Rushton Turbine. Chem Eng & Technol 2017, 40, 938. <https://doi.org/10.1002/ceat.201600600>
  • Šulc Radek, Ditl Pavel, Fořt Ivan, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš, Dančová P.: Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region. EPJ Web Conf. 2017, 143, 02120. <https://doi.org/10.1051/epjconf/201714302120>
  • Šulc Radek, Ditl Pavel, Fořt Ivan, Jašíkova Darina, Kotek Michal, Kopecký Václav, Kysela Bohuš, Dančová P.: The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine. EPJ Web Conf. 2017, 143, 02121. <https://doi.org/10.1051/epjconf/201714302121>
  • Šulc R., Pešava V., Ditl P.: Estimating the local turbulent energy dissipation rate using 2-D PIV measurements and a 1-D energy spectrum function. Theor Found Chem Eng 2015, 49, 145. <https://doi.org/10.1134/S004057951502013X>
  • Šulc Radek, Pešava Vít, Ditl Pavel: Local Turbulent Energy Dissipation Rate in a Vessel Agitated by a Rushton Turbine. Chemical and Process Engineering 2015, 36. <https://doi.org/10.1515/cpe-2015-0011>
  • Fořt Ivan: Comments on ‘Turbulent flow of shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index’ by Venneker et al. [Chem. Eng. Res. Des. 88 (2010) 827–843]. Trans IChemE A 2011, 89, 2196. <https://doi.org/10.1016/j.cherd.2010.10.008>
  • Alopaeus Ville, Moilanen Pasi, Laakkonen Marko: Analysis of stirred tanks with two‐zone models. AIChE Journal 2009, 55, 2545. <https://doi.org/10.1002/aic.11850>
  • Harris C.K., Roekaerts D., Rosendal F.J.J., Buitendijk F.G.J., Daskopoulos Ph., Vreenegoor A.J.N., Wang H.: Computational fluid dynamics for chemical reactor engineering. Chemical Engineering Science 1996, 51, 1569. <https://doi.org/10.1016/0009-2509(96)00021-8>
  • LUNDÉN MARTIN: SIMULATION OF THREE-DIMENSIONAL FLOW IN STIRRED VESSELS. INFLUENCE OF THE IMPELLER MODELING AND SCALE-UP. Chemical Engineering Communications 1995, 139, 79. <https://doi.org/10.1080/00986449508936400>
  • Ranade Vivek V.: COMPUTATIONAL FLUID DYNAMICS FOR REACTOR ENGINEERING. Reviews in Chemical Engineering 1995, 11. <https://doi.org/10.1515/REVCE.1995.11.3.229>
  • Fořt Ivan, Machoň Václav, Kadlec Petr: Distribution of energy dissipation rate in an agitated gas‐liquid system. Chem Eng & Technol 1993, 16, 389. <https://doi.org/10.1002/ceat.270160606>
  • Rogalewicz V., Fořt I.: Stochastic model of an agitated gas-liquid system. Comput Chem Engrg 1991, 15, 437. <https://doi.org/10.1016/0098-1354(91)87021-Z>
  • Costes J., Couderc J.P.: Study by laser Doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank: Influence of the size of the units—I. Mean flow and turbulence. Chemical Engineering Science 1988, 43, 2751. <https://doi.org/10.1016/0009-2509(88)80018-6>
  • Platzer Bernd, Noll Günter: Modelling of the local distributions of velocity components and turbulence parameters in agitated vessels—method and results. Chem Eng Process Process Intensification 1988, 23, 13. <https://doi.org/10.1016/0255-2701(88)87011-9>
  • Placek Jiří, Tavlarides L. L., Smith G. W., Fořt Ivan: Turbulent flow in stirred tanks. Part II: A two‐scale model of turbulence. AIChE Journal 1986, 32, 1771. <https://doi.org/10.1002/aic.690321103>