Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1981, 46, 687-692
https://doi.org/10.1135/cccc19810687

Syntheses and properties of substituted icosahedral carborane thiols

Jaromír Plešek and Stanislav Heřmánek

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 150 68 Řež

Crossref Cited-by Linking

  • Sivaev Igor B., Anufriev Sergey A., Shmalko Akim V.: How substituents at boron atoms affect the CH-acidity and the electron-withdrawing effect of the ortho-carborane cage: A close look on the 1H NMR spectra. Inorganica Chimica Acta 2023, 547, 121339. <https://doi.org/10.1016/j.ica.2022.121339>
  • Ehn Marcel, Litecká Miroslava, Londesborough Michael G.S.: Unexpected minor products from the thermal auto-fusion of arachno-SB8H12: Luminescent 4-(HS)-syn-B18H21 and 3-(HS)-syn-B18H21. Inorganic Chemistry Communications 2023, 155, 111021. <https://doi.org/10.1016/j.inoche.2023.111021>
  • Ren Hongyuan, Zhang Ping, Xu Jingkai, Ma Wenli, Tu Deshuang, Lu Chang-sheng, Yan Hong: Direct B–H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J. Am. Chem. Soc. 2023, 145, 7638. <https://doi.org/10.1021/jacs.3c01314>
  • Jana Arijit, Jash Madhuri, Dar Wakeel Ahmed, Roy Jayoti, Chakraborty Papri, Paramasivam Ganesan, Lebedkin Sergei, Kirakci Kaplan, Manna Sujan, Antharjanam Sudhadevi, Machacek Jan, Kucerakova Monika, Ghosh Sundargopal, Lang Kamil, Kappes Manfred M., Base Tomas, Pradeep Thalappil: Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence. Chem. Sci. 2023, 14, 1613. <https://doi.org/10.1039/D2SC06578A>
  • Druzina A. A., Stogniy M. Yu.: Synthesis of cholesterol derivatives based on closo- and nido-carboranes. Russ Chem Bull 2021, 70, 527. <https://doi.org/10.1007/s11172-021-3119-1>
  • Yaseen Muhammad, Humayun Muhammad, Khan Abbas, Usman Muhammad, Ullah Habib, Tahir Asif Ali, Ullah Habib: Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. Energies 2021, 14, 1278. <https://doi.org/10.3390/en14051278>
  • Goronzy Dominic P., Staněk Jan, Avery Erin, Guo Han, Bastl Zdeněk, Dušek Michal, Gallup Nathan M., Gün Saliha, Kučeráková Monika, Levandowski Brian J., Macháček Jan, Šícha Václav, Thomas John C., Yavuz Adem, Houk K. N., Danışman Mehmet Fatih, Mete Ersen, Alexandrova Anastassia N., Baše Tomáš, Weiss Paul S.: Influence of Terminal Carboxyl Groups on the Structure and Reactivity of Functionalized m-Carboranethiolate Self-Assembled Monolayers. Chem. Mater. 2020, 32, 6800. <https://doi.org/10.1021/acs.chemmater.0c02722>
  • Laskova Julia, Kosenko Irina, Ananyev Ivan, Stogniy Marina, Sivaev Igor, Bregadze Vladimir: “Free of Base” Sulfa-Michael Addition for Novel o-Carboranyl-DL-Cysteine Synthesis. Crystals 2020, 10, 1133. <https://doi.org/10.3390/cryst10121133>
  • Dumur Frédéric, Dumas Eddy, Mayer Cédric R.: Functionalization of Gold Nanoparticles by Inorganic Entities. Nanomaterials 2020, 10, 548. <https://doi.org/10.3390/nano10030548>
  • Aoki Takuto, Nakahama Yuta, Ikeda Tadao, Shindo Masako, Uchiyama Masanobu, Shudo Ken-ichi: Electronic states of 3D aromatic molecules on Au(111) surfaces: adsorption of carboranethiol. J Mater Sci 2019, 54, 10249. <https://doi.org/10.1007/s10853-019-03598-2>
  • Stogniy Marina Yu., Erokhina Svetlana A., Druzina Anna A., Sivaev Igor B., Bregadze Vladimir I.: Synthesis of novel carboranyl azides and “click” reactions thereof. Journal of Organometallic Chemistry 2019, 904, 121007. <https://doi.org/10.1016/j.jorganchem.2019.121007>
  • Kellert Martin, Worm Dennis J., Hoppenz Paul, Sárosi Menyhárt B., Lönnecke Peter, Riedl Bernd, Koebberling Johannes, Beck-Sickinger Annette G., Hey-Hawkins Evamarie: Modular triazine-based carborane-containing carboxylic acids – synthesis and characterisation of potential boron neutron capture therapy agents made of readily accessible building blocks. Dalton Trans. 2019, 48, 10834. <https://doi.org/10.1039/C9DT02130B>
  • Ol'shevskaya Valentina A., Makarenkov Anton V., Borisov Yury A., Ananyev Ivan V., Kononova Elena G., Kalinin Valery N., Ponomaryov Andrey B.: CAN catalysis and click chemistry routes in the synthesis of carborane-containing ferrocenes. Polyhedron 2018, 141, 181. <https://doi.org/10.1016/j.poly.2017.11.034>
  • Wang Yin-Ping, Lin Yue-Jian, Jin Guo-Xin: Palladium-promoted sulfur atom migration on carboranes: facile B(4)−S bond formation from mononuclear Pd-B(4) complexes. Pure and Applied Chemistry 2018, 90, 607. <https://doi.org/10.1515/pac-2017-0609>
  • Anufriev Sergei A., Zakharova Maria V., Stogniy Marina Yu., Sivaev Igor B., Bregadze Vladimir I.: Novel sulfur containing derivatives of carboranes and metallacarboranes. Pure and Applied Chemistry 2018, 90, 633. <https://doi.org/10.1515/pac-2017-0908>
  • Kuhnert Robert, Sárosi Menyhárt‐Botond, George Sven, Lönnecke Peter, Hofmann Bettina, Steinhilber Dieter, Murganic Blagoje, Mijatovic Sanja, Maksimovic‐Ivanic Danijela, Hey‐Hawkins Evamarie: CarbORev‐5901: The First Carborane‐Based Inhibitor of the 5‐Lipoxygenase Pathway. ChemMedChem 2017, 12, 1081. <https://doi.org/10.1002/cmdc.201700309>
  • Sivaev Igor B., Stogniy Marina Yu, Anufriev Sergei A., Zakharova Maria V., Bregadze Vladimir I.: New sulfur derivatives of carboranes and metallacarboranes. Phosphorus, Sulfur, and Silicon and the Related Elements 2017, 192, 192. <https://doi.org/10.1080/10426507.2016.1255616>
  • Baše Tomáš, Macháček Jan, Hájková Zuzana, Langecker Jens, Kennedy John D., Carr Michael J.: Thermal isomerizations of monothiolated carboranes (HS)C 2 B 10 H 11 and the solid-state investigation of 9-(HS)-1,2-C 2 B 10 H 11 and 9-(HS)-1,7-C 2 B 10 H 11. Journal of Organometallic Chemistry 2015, 798, 132. <https://doi.org/10.1016/j.jorganchem.2015.06.020>
  • Thomas John C., Boldog Ishtvan, Auluck Harsharn S., Bereciartua Pablo J., Dušek Michal, Macháček Jan, Bastl Zdeněk, Weiss Paul S., Baše Tomáš: Self-Assembled p-Carborane Analogue of p-Mercaptobenzoic Acid on Au{111}. Chem. Mater. 2015, 27, 5425. <https://doi.org/10.1021/acs.chemmater.5b02263>
  • Neirynck P., Schimer J., Jonkheijm P., Milroy L.-G., Cigler P., Brunsveld L.: Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 2015, 3, 539. <https://doi.org/10.1039/C4TB01489H>
  • Ol’shevskaya V. A., Zaitsev A. V., Kalinin V. N., Shtil A. A.: Synthesis and antitumor activity of novel tetrakis[4-(closo-carboranylthio)tetrafluorophenyl]porphyrins. Russ Chem Bull 2014, 63, 2383. <https://doi.org/10.1007/s11172-014-0751-z>
  • Jankowiak Aleksandra, Kaszyński Piotr: Practical Synthesis of 1,12-Difunctionalized o-Carborane for the Investigation of Polar Liquid Crystals. Inorg. Chem. 2014, 53, 8762. <https://doi.org/10.1021/ic5014494>
  • Matějíček Pavel, Uchman Mariusz, Lepšík Martin, Srnec Martin, Zedník Jiří, Kozlík Petr, Kalíková Květa: Preparation and Separation of Telechelic Carborane‐Containing Poly(ethylene glycol)s. ChemPlusChem 2013, 78, 528. <https://doi.org/10.1002/cplu.201300046>
  • Wann Derek A., Lane Paul D., Robertson Heather E., Baše Tomáš, Hnyk Drahomír: The gaseous structure of closo-9,12-(SH)2-1,2-C2B10H10, a modifier of gold surfaces, as determined using electron diffraction and computational methods. Dalton Trans. 2013, 42, 12015. <https://doi.org/10.1039/c3dt51393a>
  • Langecker Jens, Fejfarová Karla, Dušek Michal, Rentsch Daniel, Baše Tomáš: Carbon-substituted 9,12-dimercapto-1,2-dicarba-closo-dodecaboranes via a 9,12-bis(methoxy-methylthio)-1,2-dicarba-closo-dodecaborane precursor. Polyhedron 2012, 45, 144. <https://doi.org/10.1016/j.poly.2012.07.067>
  • Baše Tomáš, Bastl Zdeněk, Havránek Vladimír, Lang Kamil, Bould Jonathan, Londesborough Michael G.S., Macháček Jan, Plešek Jaromír: Carborane–thiol–silver interactions. A comparative study of the molecular protection of silver surfaces. Surface and Coatings Technology 2010, 204, 2639. <https://doi.org/10.1016/j.surfcoat.2010.02.019>
  • Stogniy Marina Yu., Sivaev Igor B., Petrovskii Pavel V., Bregadze Vladimir I.: Synthesis of monosubstituted functional derivatives of carboranes from 1-mercapto-ortho-carborane: 1-HOOC(CH2)nS-1,2-C2B10H11and [7-HOOC(CH2)nS-7,8-C2B9H11]−(n = 1–4). Dalton Trans. 2010, 39, 1817. <https://doi.org/10.1039/B916022A>
  • Baše Tomáš, Bastl Zdeněk, Šlouf Miroslav, Klementová Mariana, Šubrt Jan, Vetushka Aliaksei, Ledinský Martin, Fejfar Antonín, Macháček Jan, Carr Michael J., Londesborough Michael G. S.: Gold Micrometer Crystals Modified with Carboranethiol Derivatives. J. Phys. Chem. C 2008, 112, 14446. <https://doi.org/10.1021/jp802281s>
  • Bregadze V. I., Glazun S. A.: Metal-containing carboranes with antitumor activity. Russ Chem Bull 2007, 56, 643. <https://doi.org/10.1007/s11172-007-0104-2>
  • Batsanov Andrei S., Clegg William, Copley Royston C.B., Fox Mark A., Gill Wendy R., Grimditch Rachel S., Hibbert Thomas G., Howard Judith A.K., MacBride J.A. Hugh, Wade Kenneth: Preparative and structural studies on sulfur-linked carborane icosahedra: 2-Phenyl-ortho-carboranyl-sulfur systems (2-Ph-1,2-C2B10H10)2X (X=S, S2 or SO), and ortho-carboran-di-yl systems (1,2-C2B10H10Y)2 (Y=S or SO). J Polyhedron 2006, 25, 300. <https://doi.org/10.1016/j.poly.2005.06.046>
  • Baše Tomáš, Bastl Zdeněk, Plzák Zbyněk, Grygar Tomáš, Plešek Jaromír, Carr Michael J., Malina Václav, Šubrt Jan, Boháček Jaroslav, Večerníková Eva, Kříž Otomar: Carboranethiol-Modified Gold Surfaces. A Study and Comparison of Modified Cluster and Flat Surfaces. Langmuir 2005, 21, 7776. <https://doi.org/10.1021/la051122d>
  • Boyd Lynn A., Clegg William, Copley Royston C. B., Davidson Matthew G., Fox Mark A., Hibbert Thomas G., Howard Judith A. K., Mackinnon Angus, Peace Richard J., Wade Kenneth: Exo-π-bonding to an ortho-carborane hypercarbon atom: systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X = F, OH or NH2) and related anions. Dalton Trans. 2004, 2786. <https://doi.org/10.1039/B406422D>
  • Viñas Clara, Barberà Gemma, Oliva Josep M., Teixidor Francesc, Welch Alan J., Rosair Georgina M.: Are Halocarboranes Suitable for Substitution Reactions? The Case for 3-I-1,2-closo-C2B10H11:  Molecular Orbital Calculations, Aryldehalogenation Reactions, 11B NMR Interpretation of closo-Carboranes, and Molecular Structures of 1-Ph-3-Br-1,2-closo-C2B10H10 and 3-Ph-1,2-closo-C2B10H11. Inorg. Chem. 2001, 40, 6555. <https://doi.org/10.1021/ic010493o>
  • Heřmánek S: NMR as a tool for elucidation of structures and estimation of electron distribution in boranes and their derivatives. Inorg Chim Ada 1999, 289, 20. <https://doi.org/10.1016/S0020-1693(99)00055-9>
  • Lebedev V.N., Balagurova E.V., Polyakov A.V., Yanovsky A.I., Struchkov Yu.T., Zakharkin L.I.: Selective fluorination of o0 and m-carboranes. Synthesis of 9-monofluoro-, 9,12-difluoro-1,8,9,12-trifluoro-, and 8,9,10,12-tetrafluoro-o-carboranes and 9-monofluoro-, and 9,10-difluoro-m-carboranes. Molecular structure of 8,9,10,12-tetrafluoro-o-carborane. J Organomet Chem 1990, 385, 307. <https://doi.org/10.1016/0022-328X(90)85001-F>
  • Vondrák Tomáš, Plešek Jaromír, Heřmánek Stanislav, Štíbr Bohumil: Charge distribution in icosahedral carboranes: A UV photoelectron spectroscopic study. J Polyhedron 1989, 8, 805. <https://doi.org/10.1016/S0277-5387(00)83850-4>
  • Davidson George: Elements of group 3. Coordination Chemistry Reviews 1983, 49, 117. <https://doi.org/10.1016/0010-8545(83)80014-9>
  • PLESEK J., HERMANEK S.: ChemInform Abstract: SYNTHESES AND PROPERTIES OF SUBSTITUTED ICOSAHEDRAL CARBORANE THIOLS. Chemischer Informationsdienst 1981, 12. <https://doi.org/10.1002/chin.198130261>