Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1981, 46, 377-390
https://doi.org/10.1135/cccc19810377

The role of electronic and steric effects in 29Si-NMR spectra of compounds with Si-O-C group

Jan Schramla, Václav Chvalovskýa, Märt Mägib and Endel Lippmaab

a Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol
b Institute of Cybernetics, Estonian Academy of Sciences, Tallin 200 001, USSR

Crossref Cited-by Linking

  • Yao Wubing, Li Rongrong, Jiang Huajiang, Han Deman: An Additive-Free, Base-Catalyzed Protodesilylation of Organosilanes. J. Org. Chem. 2018, 83, 2250. <https://doi.org/10.1021/acs.joc.7b03139>
  • Chulsky Karina, Dobrovetsky Roman: Metal-Free Catalytic Reductive Cleavage of Enol Ethers. Org. Lett. 2018, 20, 6804. <https://doi.org/10.1021/acs.orglett.8b02932>
  • Ehrlich Lisa, Gericke Robert, Brendler Erica, Wagler Jörg: (2-Pyridyloxy)silanes as Ligands in Transition Metal Coordination Chemistry. Inorganics 2018, 6, 119. <https://doi.org/10.3390/inorganics6040119>
  • Kim Tak H., White Alan R., Sirdaarta Joseph P., Ji Wenyu, Cock Ian E., St. John James, Boyd Sue E., Brown Christopher L., Li Qin: Yellow-Emitting Carbon Nanodots and Their Flexible and Transparent Films for White LEDs. ACS Appl. Mater. Interfaces 2016, 8, 33102. <https://doi.org/10.1021/acsami.6b12113>
  • Sanji Takanobu, Nose Keiji, Kakinuma Junko, Iyoda Tomokazu: Transition-metal-free controlled polymerization of 2-polyfluorophenyl-5-trimethylsilylthiophenes: the substituent impact of fluorine. Polym. Chem. 2016, 7, 7116. <https://doi.org/10.1039/C6PY01831A>
  • Nakai Syunji, Matsui Masaki, Shimizu Yosuke, Adachi Yurina, Obora Yasushi: Palladium-Catalyzed Oxidative Silylation of Simple Olefins To Give Allylsilanes Using Hexamethyldisilane and Molecular Oxygen as the Sole Oxidant. J. Org. Chem. 2015, 80, 7317. <https://doi.org/10.1021/acs.joc.5b01216>
  • Zámostná Lada, Sander Stefan, Braun Thomas, Laubenstein Reik, Braun Beatrice, Herrmann Roy, Kläring Paul: Synthesis and structure of rhodium(i) silyl carbonyl complexes: photochemical C–F and C–H bond activation of fluorinated aromatic compounds. Dalton Trans. 2015, 44, 9450. <https://doi.org/10.1039/C5DT00819K>
  • Shekar Sukesh, Brown Seth N.: Migrations of Alkyl and Aryl Groups from Silicon to Nitrogen in Silylated Aryloxyiminoquinones. Organometallics 2013, 32, 556. <https://doi.org/10.1021/om301028c>
  • Du Van An, Stipicic Gregor N., Schubert Ulrich: 29Si NMR Shielding Calculations Employing Density Functional Theory, Focussing on Hypervalent Silicon Compounds. Eur. J. Inorg. Chem. 2011, 2011, 3365. <https://doi.org/10.1002/ejic.201100286>
  • Andrés Román, Jesús Ernesto de, Fierro José L. G., Terreros Pilar: Bifunctional carbosilane dendrons for the immobilization of zirconocene catalysts on silica. NJC 2011, 35, 2203. <https://doi.org/10.1039/c1nj20272c>
  • Wiberg Nils, Hwang-Park Hae-Sook, Mikulcik Patrizia, Müller Gerhard: Auf dem wege zu einem stabilen germaethen Ge = C<1: Sterisch überladene digermylsilylmethane tBu2SiXCY(GeMe3)2 und struktur der germaethenquelle tBu2SiFCLi(GeMe3)2 · 2THF. J Organomet Chem 1996, 511, 239. <https://doi.org/10.1016/0022-328X(95)05967-T>
  • Popowski E., Kosse P., Kelling H., Jancke H.: Bis(trimethylsilyl)aminosubstituierte Silane - Synthese und spektroskopische Untersuchungen. Z. Anorg. Allg. Chem. 1991, 594, 179. <https://doi.org/10.1002/zaac.19915940121>
  • Popowski E., Marekowa U., Reiske T., Schulz H., Kelling H., Jancke H.: Spektroskopische Untersuchungen zu Substituenteneffekten in Silylmethylsilanen. Z. Anorg. Allg. Chem. 1990, 583, 195. <https://doi.org/10.1002/zaac.19905830124>
  • Howarth Oliver W., Ratcliffe Giles S., Burchill Paul: 29Si derivatization and nuclear magnetic resonance study of oxygen functionality in coals and coal products. Fuel 1990, 69, 297. <https://doi.org/10.1016/0016-2361(90)90090-D>
  • Schraml Jan: 29Si N M R spectroscopy of trimethylsilyl tags. Progress in Nuclear Magnetic Resonance Spectroscopy 1990, 22, 289. <https://doi.org/10.1016/0079-6565(90)80010-F>
  • Popowski E., Schulz J., Feist K., Kelling H., Jancke H.: Basizit�t und29Si-NMR-spektroskopische Untersuchungen von Ethoxysiloxanen. Z. Anorg. Allg. Chem. 1988, 558, 206. <https://doi.org/10.1002/zaac.19885580121>
  • Brežný Robert, Schraml Jan: Silicon-29 NMR Spectral Studies of Kraft Lignin and Related Model Compounds. Holzforschung 1987, 41, 293. <https://doi.org/10.1515/hfsg.1987.41.5.293>
  • Liepiņš E., Zicmane I., Lukevics E.: 73GE, 17O, 13C NMR Spectra of alkoxygermanes. J Organomet Chem 1986, 306, 327. <https://doi.org/10.1016/S0022-328X(00)98994-0>
  • Liepiņš E., Zicmane I., Lukevics E.: A multinuclear NMR spectroscopy study of alkoxysilanes. J Organomet Chem 1986, 306, 167. <https://doi.org/10.1016/S0022-328X(00)99704-3>
  • Brežný Robert, Schraml Jan, Kvíčalová Magdalena, Zelený Jan, Chvalovský Václav: Silicon-29 NMR Spectroscopy in Lignin Chemistry - Application to Trimethylsilylated Spruce Dioxane Lignin and Related Model Compounds. Holzforschung 1985, 39, 297. <https://doi.org/10.1515/hfsg.1985.39.5.297>
  • Cloux Roland, Schlosser Manfred: An efficient synthesis of ?,?-unsaturated aldehydes by a four-carbon unit extension ofGrignard reagents. Helv. Chim. Acta 1984, 67, 1470. <https://doi.org/10.1002/hlca.19840670607>
  • Pikies J., Wojnowski W.: 29Si-NMR-chemische Verschiebung von Verbindungen mit vier elektronegativen Substituenten am Silicium. Z. Anorg. Allg. Chem. 1984, 511, 219. <https://doi.org/10.1002/zaac.19845110423>
  • Schraml J., Šraga J., Hrnčiar P.: 29Si NMR spectra of trimethylsilylated cyclic acyloins and ketones.29Si chemical shifts as a measure of ring size. Org. Magn. Reson. 1983, 21, 73. <https://doi.org/10.1002/omr.1270210120>
  • Schraml J., Petráková E., Pihar O., Hirsch J., Chvalovský V.: 29Si chemical shifts and additivity in pertrimethylsilylatedO-methyl,O-benzyl,O-benzoyl andO-acetyl methyl β-D-xylopyranosides. Org. Magn. Reson. 1983, 21, 666. <https://doi.org/10.1002/omr.1270211105>
  • Pikies J., Herman A., Wojnowski W., Meller A.: 29Si-Chemische Verschiebungen in Alkoxy(amino)silanen. Z. Anorg. Allg. Chem. 1983, 498, 218. <https://doi.org/10.1002/zaac.19834980327>