Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1981, 46, 2854-2859
https://doi.org/10.1135/cccc19812854

CW-CO2 laser-induced and SF6-sensitized decomposition of trifluoroacetic acid

Josef Pola

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol

Crossref Cited-by Linking

  • McIntosh Grant J., Russell Douglas K.: High Temperature Chemistry of Chlorinated Acenaphthylene. 3C Bay Acetylene Additions and Annealing by Five-Membered Ring Shifts. J. Phys. Chem. A 2015, 119, 12767. <https://doi.org/10.1021/acs.jpca.5b08391>
  • McIntosh Grant J., Russell Douglas K.: Experimental and Theoretical Studies into the Formation of C4–C6 Products in Partially Chlorinated Hydrocarbon Pyrolysis Systems: A Probabilistic Approach to Congener-Specific Yield Predictions. J. Phys. Chem. A 2014, 118, 8644. <https://doi.org/10.1021/jp5015516>
  • McIntosh Grant J., Russell Douglas K.: Role of Hydrogen Abstraction Acetylene Addition Mechanisms in the Formation of Chlorinated Naphthalenes. 2. Kinetic Modeling and the Detailed Mechanism of Ring Closure. J. Phys. Chem. A 2014, 118, 12205. <https://doi.org/10.1021/jp5089806>
  • McIntosh Grant J., Russell Douglas K.: Molecular Mechanisms in the Pyrolysis of Unsaturated Chlorinated Hydrocarbons: Formation of Benzene Rings. 2. Experimental and Kinetic Modeling Studies. J. Phys. Chem. A 2013, 117, 4198. <https://doi.org/10.1021/jp3120385>
  • Mosiadz M., Juda K. L., Hopkins S. C., Soloducho J., Glowacki B. A.: An in-depth in situ IR study of the thermal decomposition of yttrium trifluoroacetate hydrate. J Therm Anal Calorim 2012, 107, 681. <https://doi.org/10.1007/s10973-011-1772-6>
  • Mosiadz M., Juda K.L., Hopkins S.C., Soloducho J., Glowacki B.A.: An in-depth in situ IR study of the thermal decomposition of copper trifluoroacetate hydrate. J FLUORINE CHEM 2012, 135, 59. <https://doi.org/10.1016/j.jfluchem.2011.08.010>
  • McIntosh Grant J., Russell Douglas K.: Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons. New J. Chem. 2008, 32, 2245. <https://doi.org/10.1039/b808495e>
  • Kumar Awadhesh, Upadhyaya Hari P., Naik Prakash D.: Dissociation Dynamics of Difluoroacetic Acid from the Ground and Excited Electronic States. J. Phys. Chem. A 2004, 108, 6257. <https://doi.org/10.1021/jp048744c>
  • Reynard Linda M., Donaldson D. J.: Overtone-Induced Chemistry of Trifluoroacetic Acid:  An Experimental and Theoretical Study. J. Phys. Chem. A 2002, 106, 8651. <https://doi.org/10.1021/jp021084w>
  • Kumar Awadhesh, Vatsa R.K., Naik P.D., Rama Rao K.V.S., Mittal J.P.: Infrared fluorescence from nascent CO2 and COF2 photoproducts in IR multiphoton dissociation of trifluoroacetic acid. Chemical Physics Letters 1993, 208, 385. <https://doi.org/10.1016/0009-2614(93)87160-5>
  • Kumar Awadhesh, Vatsa R.K., Naik P.D., Rama Rao K.V.S., Mittal J.P.: Time-resolved infrared fluorescence from an IR multiphoton dissociation product of trifluoroacetic anhydride. Chemical Physics Letters 1992, 200, 283. <https://doi.org/10.1016/0009-2614(92)80012-Z>
  • Pola J., Bastl Z., Tl��skal J., King P.J., James B.W., Falconer I.S., Whitbourn L.B., Kumar Rachana, Gopal Vishnu, Chhabra K.C.: Infrared-laser induced production of silicon coating via reaction of silane with trifluoroacetic acid. Infrared Physics 1990, 30, 355. <https://doi.org/10.1016/0020-0891(90)90052-W>
  • Pola J.: New pathways in laser induced thermal gas-phase chemistry. Spectrochimica Acta Part A: Molecular Spectroscopy 1990, 46, 607. <https://doi.org/10.1016/0584-8539(90)80178-2>
  • Pola Josef, Chvátal Zdenek: Laser-powered homogeneous decomposition of 1-bromo-1-chloro-2,2,2,-trifluoroethane. J FLUORINE CHEM 1989, 42, 233. <https://doi.org/10.1016/S0022-1139(00)82752-9>
  • Pola Josef: Gas-phase decomposition of 1-trifluoromethoxy-1,1,2,2-tetrafluoro-2-iodoethane. APPL PYROLYSIS 1988, 13, 151. <https://doi.org/10.1016/0165-2370(88)80055-X>